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ABSTRACT

Nonlinear local Lyapunov vectors (NLLVs) are developed to indicate orthogonal directions in phase space

with different perturbation growth rates. In particular, the first few NLLVs are considered to be an appro-

priate orthogonal basis for the fast-growing subspace. In this paper, the NLLV method is used to generate

initial perturbations and implement ensemble forecasts in simple nonlinear models (the Lorenz63 and

Lorenz96 models) to explore the validity of the NLLV method.

The performance of the NLLV method is compared comprehensively and systematically with other

methods such as the bred vector (BV) and the random perturbation (Monte Carlo) methods. In experiments

using the Lorenz63 model, the leading NLLV (LNLLV) captured a more precise direction, and with a faster

growth rate, than any individual bred vector. It may be the larger projection on fastest-growing analysis errors

that causes the improved performance of the new method. Regarding the Lorenz96 model, two practical

measures—namely the spread–skill relationship and the Brier score—were used to assess the reliability and

resolution of these ensemble schemes. Overall, the ensemble spread of NLLVs is more consistent with the

errors of the ensemblemean, which indicates the better performance of NLLVs in simulating the evolution of

analysis errors. In addition, theNLLVs perform significantly better than theBVs in terms of reliability and the

random perturbations in resolution.

1. Introduction

The atmosphere is a chaotic system, and even negli-

gible initial errors will give rise to gradual deviation of

the forecast state from the true path, eventually result-

ing in chaos (Lorenz 1963a,b, 1965; Li and Chou 1997).

This means that the weather has a predictability limit

beyond which forecasts will lose all skill. Based on this,

any single forecast is simply an estimate of the future

state of the atmosphere within a stochastic framework

but provides no information regarding its reliability.

Ensemble prediction offers one approach to generate

probabilistic forecasts of the future state of the system

based on a statistical sampling approach (Leith 1974).

The ensemble method provides an approximate de-

scription of the probability density function (PDF) of

the forecast state based on a finite number of samples. In

a generally perfect model, if a group of initial states

sample the uncertainty related to the initial value rea-

sonably well, the states of their individual integration

will have the ability to represent the uncertainty of the

forecast states. In contrast with a single forecast, ensem-

ble averaging provides a nonlinear filter that reduces

error (Toth and Kalnay 1997). However, the ensemble

mean simply treats the ensemble forecast as a single

forecast, which does not indicate how reliable the result

is. The biggest advantage of ensemble prediction is the

product of the second moment of the ensemble, or the

ensemble spread (Whitaker and Loughe 1998; Zhu et al.
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2002). With this additional information, the quality of

forecasts can be significantly enhanced.

Initially, the use of ensemble techniques focused on

random samples (Monte Carlo forecasting) as a de-

scription of the probability distribution of initial states

(Epstein 1969; Leith 1974). However, the atmosphere

is an extremely complex system, which has a very high

phase-space dimension; that is, the number of random

samples must be sufficiently large. Consequently, the

cost of performing the requisite number of predictions

presents a significant challenge. However, as more and

more intensive studies of data assimilation procedures

have been completed, analysis errors are no longer con-

sidered to be totally unknown. Pure random perturba-

tions may introduce irrelevant directions to a chosen

initial state (Houtekamer andDerome 1994). In the early

1990s, ensemble prediction systems were developed and

used operationally by weather prediction centers. Dif-

ferent schemes are used to generate the initial perturba-

tions in the control analysis: for example, the bred vector

(BV) method (Toth and Kalnay 1993, 1997) at the Na-

tional Centers for Environmental Prediction (NCEP),

the singular vector (SV) method (Molteni and Palmer

1993; Molteni et al. 1996; Buizza 1997) at the European

Centre forMedium-RangeWeather Forecasts (ECMWF),

and the perturbed-observation approach (Houtekamer

et al. 1996) at the Canadian Meteorological Centre

(CMC). The BV and SV methods have been widely used

in predictability and probabilistic prediction of weather

and climate (Cai et al. 2003; Yang et al. 2009; Cheng et al.

2010; Buizza 2010). Recently, somemethods based on the

ensemble transform concept to generate the initial

perturbations, such as the ensemble transform Kalman

filter (ETKF), ensemble transform (ET), and ensemble

transform with rescaling (ETR) methods, have been de-

veloped and attempted to improve operational forecasts

(Bishop et al. 2001; Wang and Bishop 2003; Wei et al.

2006, 2008; Descamps and Talagrand 2007; Pu and

Hacker 2009).

Of several operational ensemble generation schemes,

the breeding method is the most time efficient (Wang

and Bishop 2003). Toth and Kalnay (1993, 1997) intro-

duced the breeding cycle as a procedure to simulate the

behavior of growing modes in the analysis cycle (see

Fig. 1). Their rationale was that in a data assimilation

cycle, random errors introduced at each analysis stage

would evolve into fast-growing directions in the atmo-

spheric flow; that is, the ratio of fast-growing errors to the

total error would significantly increase in the control

analysis (Toth and Kalnay 1997). Based on these proper-

ties of analysis errors, the breeding method was proposed

to simulate the analysis cycle and generate fast-growing

error modes. In this process, random perturbations are

superposed on the initial condition, evolve directly in

a nonlinear model of dynamical flow, and are then scaled

down to the same size as the initial perturbations at reg-

ular intervals. The final perturbations corresponding to

each initial state are called BVs, which are added and

subtracted from the control analysis to generate the

ensemble samples. A more complete description is

given in appendix A.

TheBVsare a nonlinear extensionof the localLyapunov

vectors (LLVs) (Toth and Kalnay 1997; Kalnay 2003).

Through the breeding cycles, the BVs all generally turn

toward the fastest-growing modes. Toth and Kalnay

(1997) state that the BVs have strong similarities in

some local regions but are quasi-orthogonal globally.

However, the high correlation between the local struc-

tures of the BVs may degrade the global orthogonality to

some extent. Wang and Bishop (2003) analyzed the or-

thogonal properties of BVs, concluding that ‘‘nearly all of

the ensemble forecast variance is contained in a single

direction for both the simple breeding and the masked

breeding.’’ This result means that BVs may not span the

fast-growing subspace efficiently. However, short-term

error growth is a local phenomenon. The high correlation

of BVs over local regions may limit forecast skill in those

regions (Annan 2004, hereafter A04). Several methods

have been recently proposed to prevent BVs from col-

lapsing into one dominant vector. For example, A04 at-

tempted to obtain the fastest-growing modes using

orthogonal BVs. Primo et al. (2008) introduced a new

logarithmic bred vector (LBV) to increase the diversity of

the ensemble. Corazza et al. (2003) and Greybush et al.

(2013) attempted to keep BVs less correlated by adding

a small random perturbation to the perturbed run. These

methods improve to some extent the performance of the

diversity of the ensemble perturbations. However, they

did not effectively eliminate the dependence among the

initial perturbations.

Early investigators developed the theory of Lyapunov

exponents [or the Lyapunov exponent spectrum (LEs)]

to quantitatively estimate the expanding or contract-

ing nature of different directions in the phase space of

FIG. 1. Schematic representation of the creation of a bred vector for

an ensemble forecast (after Toth and Kalnay 1997).
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nonlinear dynamical systems (Benettin 1980; Wolf et al.

1985; Fraedrich 1987; Trevisan and Legnani 1995). The

LEs are global properties of the attractor of the dy-

namical system. Furthermore, local or finite-time Lya-

punov exponents have been proposed (Yoden and

Nomura 1993; Ziehmann et al. 2000) to measure the

short-term growth rate of small initial perturbations.

However, these local or finite-time Lyapunov exponents,

which are similar to the global Lyapunov exponents, are

established based on the assumption that initial pertur-

bations are infinitesimal and therefore can be controlled

by linear error growth dynamics. To understand the

nonlinear evolution of initial errors, the nonlinear lo-

cal Lyapunov exponent (NLLE) was proposed to study

the predictability of an n-dimensional chaotic system

or a single variable within the system (Li et al. 2006;

Ding and Li 2007; Rui-Qiang et al. 2008; Ding et al.

2008, 2010; Li and Wang 2008; Li and Ding 2009, 2011,

2013). The NLLE depends on the initial state, initial

error, and evolution time. For low-order chaotic sys-

tems, the error growth rate mainly depends on the

fastest-growing direction. While for high-dimensional

chaotic systems, such as the atmosphere, other fast-

growing directions also make large contributions to the

evolution of initial errors. Therefore, to further reveal

the dynamical properties of the error evolution of com-

plex nonlinear systems, the maximal NLLE was ex-

panded in a high-dimensional situation and the NLLE

spectrum (NLLEs) was proposed to investigate the

nonlinear evolution behaviors of initial perturbations

along different directions in phase space (Ding 2007; Li

and Wang 2008). This group of orthogonal initial per-

turbations was defined as the nonlinear local Lyapunov

vectors (NLLVs). The first NLLV is referred to as the

leading NLLV (LNLLV). NLLVs are a set of orthog-

onal vectors spanning the fast-growing subspace and

would be expected to be a quick and efficient ensemble

generation scheme.

Traditional BVs are obtained through natural breeding

cycles. However, natural breeding may not be efficient

for two reasons. First, the BVs span a relatively small part

of the subspace of fast-growing directions owing to their

dependence of perturbations. Second, BVs naturally

evolved from random perturbations may not be able to

provide a stable indication of the fastest-growing di-

rection after a finite breeding period. We attempted to

use the comparison and orthogonalization methods to

obtain NLLVs to overcome these two problems. The

comparison method, which was used by A04, attempts

to capture the fastest-growing direction by comparing

the growth rate of orthogonal BVs; it is, therefore,

more effective than a single breeding cycle. Here, we

will use this comparison method for the acquisition of

the LNLLV. The additional NLLVs can be obtained suc-

cessively by using Gram–Schmidt reorthonormalization

(GSR) (Wolf et al. 1985; Li and Wang 2008). A detailed

description of the GSR and comparison methods is

given in section 2. The first few NLLVs are obtained in

this way by optimally selecting the fastest-growing modes

from the initial perturbations; they are strictly orthogonal

and thereby provide an appropriate orthogonal basis for

the fast-growing subspace. The NLLV ensemble would

be expected to outperform the BV ensemble. A com-

parison of the performances of the BV and NLLV

methods in a perfect system is our primary aim here.

Results using the Monte Carlo method are also included

for reference.

The remainder of this paper is arranged as follows.

Section 2 provides a brief description of the NLLE,

NLLEs, and NLLVs, while section 3 introduces the ide-

alized models and the initialization of the analysis states.

A description of the BV and NLLV ensemble generation

schemes is given in section 4, and the performance of the

different ensemble methods are quantitatively compared

in section 5. The discussion and our conclusions are pre-

sented in section 6.

2. Defining the nonlinear local Lyapunov vector

Consider a general n-dimensional nonlinear dynami-

cal system whose evolution is governed by

dx

dt
5F(x) , (1)

where x 5 [x1(t), x2(t), . . . , xn(t)]
T is the state vector at

time t, the superscript T is the transpose, and F repre-

sents the dynamics. The evolution of a small error vector

d5 [d1(t), d2(t), . . . , dn(t)]
T, superimposed on a state x,

is governed by the nonlinear equations:

d

dt
d5 J(x)d1G(x, d) , (2)

where J(x)d are the tangent linear terms andG(x, d) are

the high-order nonlinear terms of the error d. Integrating

Eq. (2) from t5 t0 to t0 1 t, we obtain

d(t0 1 t)5h[x(t0), d(t0), t]d(t0) , (3)

where h[x(t0), d(t0), t] is defined as the nonlinear prop-

agator (Ding and Li 2007), which differs from the linear

propagator M[x(t0), t] obtained from the tangent linear

equation of Eq. (2) (Yoden and Nomura 1993; Ziehmann

et al. 2000). In a chaotic system, after several regular re-

scalings, any initial perturbation started a short time
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before t0 will converge to the fastest-growing direction

d1(t0), which is defined as the LNLLV.

Once d1(t0) has been acquired, themaximal NLLE can

be computed from the rate of change of its norm using

Eq. (3):

l1[x(t0), d1(t0), t]5
1

t
ln

kd1(t01 t)k
kd1(t0)k

, (4)

where l1[x(t0), d(t0), t] depends on the initial state x(t0)

in phase space, the initial error vector d(t0), and the

evolution time t.

If LNLLV along the fastest-growing direction has been

obtained, additional NLLVs [d2(t0), d3(t0), . . . , dm(t0)]

along other directions can be successively obtained by the

GSR (Li and Wang 2008). In GSR procedure, the di-

rection of the first vector is never affected. The second

vector is projected onto the subspace orthogonal to the

first vector, and iteratively the nth vector is projected

onto the subspace orthogonal to the previous n 2 1

vectors. If d01(t0), d
0
2(t0), . . . , d0m(t0) are m perturbations

through breeding procedure, the GSR would provide the

following orthogonal set d1(t0), d2(t0), . . . , dm(t0):

d1(t0)5 d01(t0) ,

d2(t0)5 d02(t0)2
(d1(t0), d

0
2(t0))

(d1(t0), d1(t0))
d1(t0) ,

..

.

dm(t0)5 d0m(t0)2
(d0n(t0), dn21(t0))

(dn21(t0), dn21(t0))
dn21(t0)

2⋯2
(d0n(t0), d1(t0))
(d1(t0), d1(t0))

d1(t0) , (5)

where (�, �) signifies the inner product. In practice,

d1(t0), d2(t0), . . . , dm(t0) are orthogonal to each other,

representing the vectors along the directions from the

fastest-growing direction to the fastest-shrinking di-

rection. The first few of themwill be utilized as ensemble

initial perturbations. We may also determine the ith

NLLE li(x(t0), d(t0), t) directly from the growth rate of

vector di(t0):

li[x(t0), di(t0), t]5
1

t
ln

kdi(t01 t)k
kdi(t0)k

(i5 2, 3, . . . ,m) .

(6)

The NLLEs depend on x(t0), and the sum of them de-

termines the divergence or expansion of a phase-space

volume element surrounding the initial states. Therefore,

the first few NLLVs corresponding to the largest NLLEs

properly span the unstable subspace of initial states. The

LNLLV is derived through the breeding method; there-

fore, it presents some similarity to the BV. However, the

largest difference between the NLLV method and the

BV method is that besides the LNLLV other orthogonal

fast-growing directions are also considered in the gen-

eration of ensemble perturbations. Because the first few

NLLVs point to independent-growing directions, the

perturbation growth of analysis error would be much

more likely to be simulated.

To obtain the fastest-growing LNLLV more effec-

tively than a single BV, we adapted the comparison

method of A04 before orthogonalizing the perturba-

tions (as illustrated in Fig. 2). This method includes two

steps: a comparison of the growth rates of perturbations

in each breeding cycle and a reordering of the pertur-

bations by their growth rate from the largest to the

smallest. The NLLVs bear some similarities to the or-

thogonal BVs as proposed by A04 in the use of the

comparison method. However, some differences still

exist between them. First, the orthogonal BVs in A04

are mainly used in the local region to increase local

diversity, while the NLLVs are globally orthogonal and

FIG. 2. Schematic representation of the analysis cycle and the

creation of NLLVs. In each analysis cycle, the analysis states are

updated by combining the background forecasts (black dashed

curve) and the observations (open circle). NLLVs are attained to

capture the fastest-growing components of the analysis errors. A

group of initial random perturbations are added to the initial analysis

state and integrated to the end of a breeding cycle similar to the

background forecast in analysis cycles. The red solid curve represents

the fastest-growing perturbed forecast during each cycle and the

black solid curves represent other perturbed forecasts from the sec-

ond to the nth fastest. The resulting perturbations between the

analysis and the perturbed forecasts are then rearranged according to

their growth rates during the last cycle. The direction of the fastest-

growing mode (LNLLV, red dashed line) is kept, and the other

directions (black dashed lines) are orthogonalized successively to

acquire NLLV2 to NLLVn (blue dashed line). Then these pertur-

bations are rescaled to the same size as the initial perturbations. This

process is repeated for several cycles to obtain effective NLLVs.
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represent a nonlinear extension of the LLVs based on

the theory of Lyapunov stability. Second, the generated

ensemble perturbations in A04 are much less corre-

lated than the BVs but are not strictly orthogonal. A04

reported that the mean correlation between any two

ensemble perturbations is 0.17 (i.e., not zero) at the end

of the integration time in the Lorenz96model, implying

that these perturbations are not strictly orthogonal.

However, the NLLVs are strictly orthogonal (i.e., zero

correlation) and so form an appropriate orthogonal

basis for the fast-growing subspace.

3. Experimental setup

To determine the differences among these ensemble

methods as clearly as possible, we made our comparison

based on two ideal models, namely, the Lorenz63 (Lorenz

1963a) and Lorenz96 models (Lorenz 1996). The former

can be regarded as a one-point model, while the latter can

been seen as resembling a low-order realNWPmodel.We

have taken special account of the generation of the control

analyses to ensure that they have no partiality for any

initialization methods. Anderson (1997) simply used ran-

dom perturbations as analysis errors to compare dynam-

ically constrained (i.e., BV and SV) and unconstrained

perturbation methods, but these kinds of random per-

turbations in dynamical systems were recognized to be

the nongrowing type on average, which would reduce

initially (Toth and Kalnay 1993). Therefore, growing

perturbations (i.e., BV and SV) may have no advantage in

simulating such analysis errors. Houtekamer and Derome

(1994) even used any of the BVs as an analysis error to

investigate the improvement of the breeding method to

control the forecast. Our experiments found that the

higher correlation between the BVs and the analysis er-

ror give some unfair advantage to the breeding method

over other ensemble methods (not shown). To perform

a thorough comparison of the different initialization

methods, following Descamps and Talagrand (2007),

the control analyses in the BV, NLLV, and random

perturbation methods were obtained using the ensem-

ble Kalman filter (EnKF) data assimilation method

(Evensen 2003, 2004). The detailed description of this

assimilation method is shown in appendix B.

The BV and NLLV cycles are implemented in relation

to the analysis cycle. In each analysis cycle, an analysis

state is updated by combining the observations and fore-

cast states from a numerical model, as shown in Fig. 2. The

forecast error that evolves in time through the atmospheric

flow will naturally project into the growing directions.

Therefore, growing components will develop within the

analysis cycle and dominate the analysis errors. The

breeding and NLLV cycles are implemented to simulate

the development of growing errors in the analysis cycle and

to obtain fast-growingmodes associated with the evolving

state of the atmosphere. This allows the BVs and NLLVs

to sample efficiently the probability of analysis error.

The first model is the Lorenz63model (Lorenz 1963a):

8>>><
>>>:

_x52sx1sy

_y5 rx2 y2 xz

_z5 xy2 bz

, (7)

where s5 10, r5 28, and b5 8/3, and for which the well-

known butterfly attractor exists. We selected a fourth-

order Runge–Kutta time integration scheme with a time

step equal to 0.01 time units. The linear Lyapunov ex-

ponents of this simplemodel were calculated to be 0.906,

0, and 214.572, under the given parameters (Wolf et al.

1985). This means that there is only one fast-growing

dimension on the attractor. Consequently, we performed

a two-member experiment of ensemble prediction (N5 2,

whereN denotes the number of the ensemblemember in

a forecast example) for this model.

The Lorenz96 model is a 40-variable (m5 40, wherem

denotes the dimension of the state vector of the ensemble

forecast model) model that has been used by various

authors as a low-order proxy for atmospheric prediction

and assimilation studies (e.g., Lorenz and Emanuel 1998;

Anderson 2001). We denote the state variables Xi(i 5 1,

2, . . . , 40), which are governed by the equations

dXi/dt5 (Xi112Xi22)Xi212Xi1F . (8)

In the case F5 8, the model solves Eq. (8) also using a

fourth-order Runge–Kutta scheme with a time step of

0.05 time units. This model can be seen as the time

evolution of an arbitrary one-dimensional quantity on

a constant latitude circle in which a time increment of

0.2 nondimensional units corresponds to about 1 day in

terms of the error growth rate (Lorenz 1996).

Here, all experiments are perfect model experiments

in which the output of a long-period integration will be

regarded as references of the forecasts once the system

has reached its attractor. The observations to be assim-

ilated are obtained by adding a random noise to the true

state. We assume that there are observations on every

grid. If a vector x denotes the true state vector, and y is

the observation vector, then

y5Hx1 e , (9)

where H is the observation operator that defines the

projection of prognostic variables x to the space of

observational data y. The added noise vector e has a

Gaussian distribution of N(0, 1) for both the Lorenz63

and Lorenz96 models, where N denotes the sample
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space of the Gaussian distribution, 0 is the expectation,

and 1 is the standard deviation.

To make the experimental setup clearer, two tables

listing the experiment setup of EnKF data assimilation

and the breeding procedures are included (Tables 1 and 2,

respectively). The statistical performances of the forecasts

are compared, for each initialization scheme, by averag-

ing over a large number of experiments. The number of

experiments was M 5 10 000 with different initial anal-

ysis states for the Lorenz63 model and M 5 500 for the

Lorenz96 model. To ensure that the different experi-

ments were conducted independently, they had differ-

ent initial states and different observations. For the

Lorenz63 model observations were assimilated every

0.1 time units and the performing time was 0.4 time

units in each case, while for the Lorenz96 model the

assimilation cycle was 0.05 time units (6 h) and was re-

peated over 10 time units (50 days). Under the parame-

ters as set here, the amplitudes of the initial analysis

errors were within the bounds 5%–10% of the natural

variability (about 14 for the Lorenz63 model and 2.8 for

the Lorenz96 model; in the L2 norm). The mean root-

mean-square error (RMSE) of global analysis is about

0.98 for the Lorenz63 model and about 0.17 for the

Lorenz96 model.

Once the analysis states are generated, the ensemble

perturbations produced by the random perturbation,

BV and NLLV schemes will be added and subtracted

from them. The BVs and NLLVs are generated through

breeding cycles with regular rescaling. For the Lorenz63

model, the length of a breeding cycle of the NLLV and

BVmethods is 0.1 time units and the process is repeated

over 0.4 time units. For the Lorenz96model, the length of

a breeding cycle of both methods is 0.2 time units (1day)

and the breeding time is 2 time units (10 days). The or-

thogonalization process for the NLLVs is performed

during each breeding cycle. As for the random pertur-

bation method, the random noise is from a Gaussian

distribution of N(0, 1). The ensemble perturbations of

the three methods have the same size as that of the

analysis errors for both models. The ensemble members

were integrated for 4 time units for the Lorenz63 model

to implement ensemble forecasts and 2 time units (10

days) for the Lorenz96 model. The initial states to start

assimilation in each sample were drawn at an interval of

0.05 time units (0.2 time units) for the Lorenz63 model

(the Lorenz96 model) after a first spinup of 1000 time

units.

4. Nonlinear model results

a. Perturbation growth rate

Before providing a detailed assessment of the quality

of the ensemble predictions, the error growth of the

different initial schemes will be investigated. For the

Lorenz63 model, the growth rates of the vectors from

the three schemes were compared by calculating the

ratio of the final to initial error (in the L2 norm) at the

integrated interval (i.e., the time of a breeding cycle 0.1

time units after the initial state). The parameters used to

generate the initial perturbations were those referred to

above. However, we fixed the rescaling size to 1.0, which

means that the final size of the error vector is simply the

growth rate. Three random vectors are used to generate

the LNLLV. All results presented here were averaged

over 10 000 samples. Similar to the results fromA04, the

standard breeding method results in an average ratio of

1.26, while the LNLLV has an average ratio of 1.44. As

for the random vector, it initially points to a nongrowing

direction on average and thus has an average ratio of

only 0.96.

The process for the Lorenz96 model was similar to that

for the Lorenz63 model. The rescaling factor was 0.17

(the average RMSE of analysis error). After a breeding

period of 2 time units (10 days), the first EOF explains

52% of the variance of the bred vectors, indicating that

these modes have a certain degree of similarity in

TABLE 1. Ensemble size, number of observation stations, assimilation interval, and total assimilation length of the EnKF assimilation for

the Lorenz63 and Lorenz96 models.

Model Ensemble size Observation network Assimilation interval (time units) Assimilation length (time units)

Lorenz63 20 3 0.1 0.4

Lorenz96 500 40 0.05 10

TABLE 2. Number of experiments, number of ensemble members, rescaling interval, and total breeding length of the BV and the NLLV

method for the Lorenz63 and Lorenz96 models.

Model Number of experiments Ensemble member Rescaling interval (time units) Breeding length (time units)

Lorenz63 10 000 2 0.1 0.4

Lorenz96 500 6 0.2 2
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patterns that represent the unstable modes determined

by the background flow (Corazza et al. 2003). A group

of 10 vectors were used for the generation of the

NLLVs and BVs. The comparison of growth rates from

the different schemes is shown in Fig. 3. Here, the

Lyapunov exponent was used to measure the pertur-

bation growth.

If the size of the perturbation at time t is expressed by

kDx(t)k, then the Lyapunov exponential growth can be

calculated as

l5
1

t2 t0
ln

kDx(t)k
kDx(t0)k

, (10)

where t0 denotes the initial time. Only the results of the

first five NLLVs (LNLLV to NLLV5) are shown here.

Each performance is the average of 500 samples. The

LNLLV appears to remain the fastest during the first 4

days. The NLLVs represent different directions ordered

by their growth rates. Among the first five NLLVs, the

growth rates of the first two both over take those of the

BVs during the first 2 days, while the growth rates of

the last three NLLVs are slightly smaller than that of the

BV. These results indicate that the NLLVs span the fast-

growing subspace well. After that period, with the growth

of the perturbations, the growth rates of all perturbations

slow and become very close. The random perturbations

are initially characterized by negative growth rates; the

growth becomes enhanced (superexponential) (Trevisan

and Legnani 1995) after about 1day. This may be related

to the fast growth of the small-scale errors. After small-

scale error saturation had occurred in a short time, the

growth rate gradually slowed down and mainly depended

on the error growth in the large scales (Lacarra and

Talagrand 1988; Molteni and Palmer 1993). We chose

three pairs of members (N5 6) to implement ensemble

forecasts for the Lorenz96 model. The use of more en-

semble members only limitedly improves the prediction

skill for both the BV and NLLV methods.

b. The Lorenz63 model

The RMSE and pattern anomaly correlation (PAC)

offer good measures of overall forecast performances

(Buizza et al. 2005). Figures 4a and 4b shows the mean

error (in the L2 norm) and the mean correlation (cosine

of the angle of forecast state vector and true state vec-

tor), respectively, as a function of forecast lead time. The

corresponding measurements of control forecasts are

also shown for comparison. The ensemble averaging

significantly improves the performance of the forecasts

as a whole, although different ensemble methods, be-

cause of their distinct initialization schemes, have differ-

ent forecast skills. On account of the analysis cycles that

produce the initial states, growing errors have gradually

accounted for a significant proportion of the analysis er-

rors. Random perturbations, as nongrowing errors, sim-

ulate the probabilistic distribution of analysis errors in the

suboptimal directions and thus have the worst ensemble

performance. The LNLLV has a larger projection onto

the fast-growing component of the analysis errors, and so

behaves better than the traditional BV, especially for

medium and long-range forecasts.

c. The Lorenz96 model

The Lorenz96model is a relatively complexmodel that

resembles a real NWP model and can be used to assess

different aspects of forecast performance. As, in the real

world, uncertainties in the initial states are inevitable, we

assumed that the control analysis is the most real initial

state we could obtain. Here, all results were derived from

the comparison with true references.

1) OVERALL MEASURES OF ENSEMBLE

PERFORMANCE

Similarly to the Lorenz63model, themeanRMSE and

PAC were also used here to assess overall performance

(Fig. 5). Besides, the ensemble spread is added in Fig. 5a

as a comparison with the RMSE of ensemble mean. The

spread is defined as the standard deviation of the per-

turbed ensemblemembers. The three ensemble schemes

evidently outperform the single control forecast in en-

semble skill. The gain in predictability from running an

ensemble is about 12–24 h on forecast days 7–10. For the

first few days (about 4 days), ensemble averages are

indistinguishable from the control forecasts. The initial

FIG. 3.Average growth rate in the form of Lyapunov exponent as

a function of forecast lead time for the bred vector (black solid

line), the random vector (black dashed line), and the NLLV (col-

ored solid lines; red, green, blue, yellow, and purple from LNLLV

to NLLV5).
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interval can be considered to be a linear stage, during

which positive and negative twin perturbations cancel

each other out almost completely. However, when the

errors gradually increase and enter the nonlinear stage,

ensemble averaging plays a much more important role

in nonlinear filtering to reduce error growth.

The ensemble skill of the BVs did not show an evident

improvement over that of the random vectors. The rea-

son for this may be that during the initial linear stage,

the random vectors have already pointed to growing

directions through the dynamical flow during the fore-

cast stage, which also spans the subspace of growing

errors. However, random vectors have a lower corre-

lation with the analysis errors than bred vectors, and so

perform slightly less well than bred vectors, especially

in the PAC score. Compared with these two schemes,

the ensemble mean of NLLVs is more skillful for 5–10-

day forecasts. This can be explained by the fact that the

NLLVs sample analysis errors in more mutually or-

thogonal directions than do the other two schemes. The

FIG. 4. (a) Mean error and (b) mean correlation of 10 000 samples as a function of lead time from the Lorenz63

model for the control run (black line), random perturbation method (red line), BV method (green line), and NLLV

method (blue line).

FIG. 5. (a) Mean RMSE (solid lines) and ensemble spread (dashed lines), and (b) mean PAC (pattern anomaly

correlation) of 500 samples as a function of lead time from the Lorenz96 model for the control run (black), random

perturbation method (red), BV method (green), and NLLV method (blue).
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probability distribution of the analysis errors are more

likely to be well simulated by the orthogonal basis the

NLLVs form.

The spread is a measure of ensemble reliability. For a

statistically reliable ensemble system, ensemble spread

should be close to the error of the ensemblemean (Buizza

et al. 2005). Figure 5 shows that the growth of the RMSE

exceeds that of the spread for all three methods. The use

of the comparison method in generating the ensemble

perturbations allows the NLLV method to exhibit the

largest perturbation growth during the first 2 days; after

this, the random method exhibits the largest spread

overall, but the spatial distribution of its spread has the

lowest correlation with that of the ensemble forecast

error (Fig. 6). The ensemble spread of the NLLVs re-

mained larger than that of the BVs from days 1 to 10.

This was attributed to the NLLVs sampling the analysis

errors in directions much less correlated than used in

the breeding schemes.

To distinguish the respective effects of the comparison

and the orthogonalization processes on ensemble fore-

casting, three experiments were implemented and their

results were listed in Table 3. By comparing experiments

1 and 2, the only use of the orthogonalization procedure

could reduce about 3%–4% of the RMSE of ensemble

mean relative to the BV method. The further use of the

comparison method as in experiment 3 could have an-

other nearly 1% improvement for the ensemble-mean

skill. These results indicate that the global orthgonality

is more critical than the comparison method for improving

ensemble forecasting in the Lorenz96 model. But the

two methods may have different relative performance

based on different models and different assimilation

systems. This needs a further investigation in future re-

search.

We also compared the forecast error for the BV and

NLLV methods at day 7 with the same number of en-

semble members (Fig. 6). It can be seen that the

ensemble-mean skill for the BVs and NLLVs are very

close when two ensemble members are used. However,

with the increase of the number of ensemble members,

the forecast error of the NLLV and BV schemes are both

decreased, and the performance of NLLVs is more sig-

nificant than the BVs. It indicates that the addition of the

rest NLLVs have larger contributions to the improve-

ment of prediction skill than the BVs. It can be attributed

to the orthogonality of the NLLVs that better spanning

the fast-growing subspace though the rest of them point

to mild-growing modes.

2) THE VALIDATION SCORES

Reliability and resolution are considered to be two

important attributes of ensemble predictions (Murphy

1973). Here, two scores are used to assess the perfor-

mances of the ensemble forecasts in statistical reliability

and resolution. One is the spread–skill correlation and

the other is the classical Brier score.

The first measure of statistical reliability focuses on

spread and skill correlations. The average error of the

ensemble-mean forecasts from the three schemes is used

as a reference field to ensure fair comparisons; that is,

the forecast skill is defined as the average distance of the

respective ensemble-mean forecasts from the true state.

Regions with high forecast skill (small average error)

regularly have a relatively small spread and vice versa

(Buizza et al. 2005). The spread–error correlation over

the whole field (40 grids) was computed as a measure of

transient consistency. The day-to-day variations of this

measure for the BV, random perturbations, and NLLV

methods are shown in Fig. 7. As a comparison, the re-

sults of the linear LLVs are also given. Similar to the

FIG. 6. Mean RMSE of 500 samples at day 7 as a function of the

number of BV (green line) and NLLV (blue line) ensemble

members from the Lorenz96 model.

TABLE 3.MeanRMSEof ensemblemean for the Lorenz96model

at days 3, 6, and 9 for different experiments. Each experiment was

implemented with different initial perturbations, including three

bred vectors (expt 1), three orthogonal NLLVs (expt 2), and three

orthogonal NLLVs selected from ten perturbations using the com-

parison method (expt 3).

Initial perturbations

RMSE of ensemble mean

Day 3 Day 6 Day 9

Expt 1 0.572 1.435 2.318

Expt 2 0.552 1.380 2.251

Expt 3 0.545 1.364 2.228
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NLLVs, they are also orthogonal perturbations, but they

are obtained using an integration of the tangent linear

model (TLM) of Lorenz96.

The forecast error field at time 0 can be considered to

be the analysis error amplitude. As the ensemble per-

turbations are designed to represent analysis errors, the

ensemble spread should have a similar pattern to the

analysis distance field. As is indicated in Fig. 7, the NLLV

scheme has the highest correlation coefficient at the ini-

tial time, whichmeans that thismethod performed best at

simulating the initial analysis errors. Furthermore, this

method maintains its advantage through the whole fore-

cast period. Because the effects of nonlinear terms were

introduced in the NLLVs, the spread of the NLLV en-

semble better reflected the nonlinear error growth of the

ensemble mean than did the LLVs from 1 to 10 days. It is

worth noting that the initial coefficient of the Monte

Carlo method approximates to zero, which implies that

random perturbations are almost incapable of capturing

themode of the analysis errors. TheBVmethod performs

better than the Monte Carlo method. The initial pertur-

bations of these four schemes evolve to become in-

creasingly similar to the forecast errors under the driving

effects of background flow. The correlations between the

spread and skill of these four schemes spontaneously

peaks at about day 5, which may be due to reaching the

end of the linear stage and the increasingly strong non-

linear effects. At long forecast ranges, the correlation

between spread and skill must decrease to zero (Whitaker

and Loughe 1998).

The other score used was the classical Brier score,

which measures both the reliability and resolution of the

ensemble predictions. This score assesses the performance

of the probability forecast of the occurrence of a binary

event F. In the experiments with the Lorenz96 model,

the evaluation was made on each grid Xi(i5 1, . . . , 40).

The Brier score is computed for the event 2:3#Xi # 5:9

(the climatological mean to the distance of one standard

deviation), which can be assumed to be normal for warm

events. It means that if the value of Xi falls between 2.3

and 5.9, the observed event occurs and vice versa. The

final score was calculated as the average of 500 samples.

Conventionally, the basic Brier score (BS) can be de-

composed into its reliability (BSrel) and resolution

(BSres) components (Murphy 1973; Stephenson et al.

2008). Further detail regarding this score is given in

appendix B. In brief, BS and BSrel were negatively

oriented, which means that smaller values indicate a

better performance, while for BSres the opposite was the

case. The results are presented in Fig. 8.

As is shown in Fig. 8a, for the basic Brier score, the

NLLVs performed better than either the BVs or random

vectors, and the advantage of BVs over random vectors

was very small. Figure 8b presents the evolution of the

two components of BS as a function of time. Overall, the

best performance was achieved by the NLLV ensemble,

and the figure also indicates that the superiority of the

NLLVs over the BVs comes mainly from their reliability.

It may be explained that the stronger correlations and

smaller ensemble diversity of BVs result in synergic de-

viation of ensemble forecast states from the observed

state. So the BV ensemble may not describe the proba-

bility of real events efficiently. On the other hand, the

superiority of the NLLVs over random vectors comes

mainly from their resolution. This phenomenonmay arise

because random members sample the true state from

a largely unconstrained distribution, which, over longer

periods, approximately provides the mean probability of

the event occurring. Overall, the relative performance

can be ranked as NLLV . BV . Random.

5. Discussion and conclusions

The NWP models have extremely high degrees of

freedom, which leads to huge difficulties in sampling all

of the directions in the phase spaces. Therefore, one can

argue that it is appropriate to sample the directions in

a subspace that is relatively more important. One pro-

posal is to employ a breeding cycle similar to the analysis

cycle to generate perturbations largely projecting onto

the growing components of the analysis errors (Toth

and Kalnay 1997). This method dramatically improved

the level of the ensemble prediction using finite mem-

bers and has become a useful operational forecast tool.

However, independent breeding cycles may cause a

FIG. 7. The correlation coefficients between the ensemble error

and the ensemble spread as a function of time for the four schemes,

linear LLVs (black line), random perturbations (red line), BVs

(green line), and NLLVs (blue line). All results are the average of

500 samples.
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certain degree of global similarity of bred vectors, es-

pecially in local regions, where the stronger correla-

tions are in fact repeated sampling, which degrades the

effectiveness of the ensemble. In the present paper, the

NLLV ensemble generation technique was proposed to

sample the probability distribution of analysis errors

using a set of independent and orthogonal directions.

Generally, compared to the BVs, the globally orthogo-

nality of the NLLVs can be helpful to reduce the de-

pendence among perturbations and increase the ensemble

spread. The comparison method could also be used to

optimally select the fastest-growing perturbations.

Therefore, the NLLVs performed better than the BVs

in simulate the analysis errors in the fastest-growing

subspace.

The search for the fastest-growing subspace is im-

proved by using more initial perturbations in the NLLV

scheme than in the BV scheme. This increases the com-

puting time (to about 4 times that required by the BV

scheme for the Lorenz96 model). However, the breeding

cycles of the NLLVs are independent of each other be-

fore orthogonalization and thus can be implemented in

parallel to save computational time. Therefore, the in-

creased computation cost of the NLLVs in comparison

with the BVs is mainly attributed to the comparison and

orthogonalization procedures. Our experiment using

the Lorenz96 model has a computational expense for

generating the NLLV initial perturbations that is only

about 8% greater than that of generating the BV initial

perturbations.

For the low-order models discussed here, the NLLV

method has shown a relatively better performance than

those of the BV and the Monte Carlo methods. The

Monte Carlo method generally needs many more

samples because of its defects in the recognition of the

specification of initial errors, which leads to a large

computational cost. On the other hand, random sam-

pling degrades its resolution for actual events (Fig. 8b).

The significant advantage of BVs is the ease of im-

plementation. However, in our experiments with the

Lorenz96 model, the BVs, which have stronger global

similarity and smaller ensemble spread, may not describe

the probability of real events efficiently and thus have

lower reliability.

Our experiments provide a preliminary demonstra-

tion of the GSRmethod as a quick and effective method

for separating independent ensemble modes in the

Lorenz 3- and 40-variable models. A high-dimensional

numerical model will greatly increase the dimension of

the ensemble perturbations and also bring certain diffi-

culties in utilizing the GSR method. However, the di-

mension of the fast-growing subspace is much smaller

than the model dimension. Orthogonal perturbations

can capture this subspace to the greatest extent, and

orthogonalization is only needed to generate the first

few fastest-growing NLLVs, thus greatly saving com-

putation time. The present computing power is sufficient

to satisfy the requirements of the orthogonalization in

high-order models. Therefore, the NLLV scheme could

be expected to be quick and effective for generating

ensemble perturbations in a high-dimension numerical

model. Nevertheless, some other techniques mentioned

in the introduction have been proposed to increase the

diversity of traditional BVs. These schemes may be able

FIG. 8. From the Lorenz96 model: (a) average basic Brier score of 500 samples as a function of lead time

for the random perturbation method (red line), BV method (green line), and NLLV method (blue line);

(b) resolution (dotted) and reliability (solid) contributions to the Brier score. Values are computed for the

event 2:3#Xi # 5:9 (i5 1, . . . , 40).
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to improve the prediction skill of the traditional BV

method. It is worthwhile investigating the performance

of NLLVs and comparing with these methods in more

complex models.
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APPENDIX A

Ensemble Generation Scheme of Bred Vector

Initially, Toth and Kalnay (1993) used a global re-

scaling factor to generate each ensemble perturbation

when using the BV method. In general, the value of the

factor is the same size as the empirically determined

global analysis RMSE (Wang and Bishop 2003). How-

ever, global rescaling is not optimal for reflecting the

characteristics of the observations over local regions

because it appears that regions where observations are

limited usually have larger analysis errors, and larger

regional perturbation amplitudes are therefore ex-

pected, and vice versa. Based on this relationship, Toth

and Kalnay (1997) introduced the smooth regional re-

scaling factor.

Here, only simple breeding is considered using a global

rescaling factor since all the variables in the Lorenz96

model are equivalent and the observations have the same

level for each grid point. The procedure can be easily

expressed by the equation

da5 df � c
d
, (A1)

where df and da are the perturbation vectors of forecast

and analysis, respectively, and d represents the ampli-

tude of the df , while c is the value of the rescaling factor.

The detailed processes used to generate BVs are sche-

matically described in Fig. 1 (Toth and Kalnay 1993,

1997). The initial analysis state (in this paper, the true

state was used) was perturbed by adding a random vector

of the same size as the analysis error. Themodel was then

integrated from the corresponding perturbed states. At

the end of each cycle, the perturbationwas rescaled to the

initial size and again superposed on the new reference

to integrate. This breeding cycle is repeated to the

initial state for forecasting. In this paper, the time of the

breeding cycle of the Lorenz63 and Lorenz96 models

was 0.1 and 0.2 time units (1 day), respectively.

APPENDIX B

The Ensemble Kalman Filter

The generation of initial analysis states in these ex-

periments was based on the algorithm described by

Evensen (2003, 2004). For a given observation time, the

ensemble of forecast states are obtained as a reference.

The ensemble matrix is then defined as

Xf 5 (x
f
1 , x

f
2 , . . . , x

f
N) . (B1)

Here, if xf is denoted as themean of the ensemble, then

an ensemble perturbation matrix can be expressed as

X0f 5 (x
f
1 2 x f , x

f
2 2 xf , . . . , x

f
N 2 xf ) . (B2)

The variance covariance matrix is

Pf 5
1

N2 1
X0fX0f T . (B3)

The Pf is used to update the Kalman gain K, which is

written as

K5PfHT(HPfHT 1R)21 . (B4)

Here, K is actually a weighting according to the ratio

of the forecast and observational error covariance; R is

the observational error covariance matrix. The obser-

vations are assimilated to produce a new analysis of the

state:

xai 5 x
f
i 1K(yi 2Hx

f
i ) . (B5)

The yi(i5 1, 2, . . . , N) is a set of perturbed observa-

tions that corresponds to each previous forecast of the

ensemble. They are defined as

yi5 y1 ei . (B6)

The ei values are independent realizations of the noise

N(0, 1) and are equivalent to e in section 3. Here, the

average of all analysis states of the ensemble (i.e., xa) is

regarded as the initial analysis state when performing

the forecasts. To avoid the problem of undersampling,

a 7% variance inflation factor was applied toX0f for both
of the Lorenz models. The ensemble size of the EnKF

assimilation for the Lorenz63 and Lorenz96 models is

much larger than the model dimension that has been

efficient to estimate the covariance matrix of the back-

ground error. Therefore, the localization method for the

EnKF system of both models was not used.
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APPENDIX C

Brier Score Decomposition

The algorithm of the Brier score used here is based on

Stephenson et al. (2008). Assume that the unit probability

interval [0, 1] is divided to m bins. The total forecasts

whose number is n are placed in corresponding bins by

their forecast probability. Denote the nk probability

forecasts that have fallen in the kth bin, then n5�m
k51nk.

In the kth bin, the probability of forecasts and obser-

vations read fkj and okj (0 or 1), j5 1, 2, . . . , nk, re-

spectively. The basic Brier Score can be written

BS5
1

n
�
m

k51
�
n
k

j51

( fkj2 okj)
2 . (C1)

The Brier score can be decomposed into its reliability,

resolution, and the uncertainty components:

BS5BSrel 2BSres 1BSunc , (C2)

BSrel 5
1

n
�
m

k51

nk( fk 2ok)
2 , (C3)

BSres5
1

n
�
m

k51

nk(ok 2 o)2 , (C4)

where fk is the average forecast probability and ok is

the relative frequency that the observed event occurred

in the kth bin; o is the mean probability for the event to

occur. They are calculated using the equations

fk 5
1

nk
�
n
k

j51

fkj , (C5)

ok 5
1

nk
�
n
k

j51

okj , (C6)

o5
1

n
�
m

k51

nkok . (C7)

It is BS, BSrel, and BSres that are used in the present

paper. The first two are negatively oriented and the third

is positively oriented.
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