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ABSTRACT

Ensemble prediction is a widely used tool in weather forecasting. In particular, the arithmetic mean (AM)

of ensemble members is used to filter out unpredictable features from a forecast. AM is a pointwise statistical

concept, providing the best sample-based estimate of the expected value of any single variable. The atmo-

sphere, however, is a multivariate system with spatially coherent features characterized with strong corre-

lations. Disregarding such correlations, the AM of an ensemble of forecasts removes not only unpredictable

noise but also flattens features whose presence is still predictable, albeit with somewhat uncertain location.

As a consequence, AM destroys the structure, and reduces the amplitude and variability associated with

partially predictable features. Here we explore the use of an alternative concept of central tendency for the

estimation of the expected feature (instead of single values) in atmospheric systems. Features that are co-

herent across ensemble members are first collocated to their mean position, before the AM of the aligned

members is taken. Unlike earlier definitions based on complex variational minimization (field coalescence of

Ravela and generalized ensemblemean of Purser), the proposed feature-orientedmean (FM) uses simple and

computationally efficient vector operations. Though FM is still not a dynamically realizable state, a prelim-

inary evaluation of ensemble geopotential height forecasts indicates that it retains more variance than AM,

without a noticeable drop in skill. Beyond ensemble forecasting, possible future applications include a wide

array of climate studies where the collocation of larger-scale features of interest may yield enhanced com-

positing results.

1. Introduction

Due to the chaotic nature of the atmosphere (e.g.,

Lorenz 1963; Yuan et al. 2018), errors in numerical

weather prediction (NWP) originating from the use of

imperfect initial conditions and numerical models

inevitably amplify. In addition to producing a single

unperturbed or control forecast from the best avail-

able initial condition, a properly formulated ensemble

of forecasts also offer some value (e.g., Toth and

Kalnay 1993; Molteni et al. 1996). One benefit is that

the mean of an ensemble (generally defined as the

arithmetic mean (AM) of ensemble member fore-

casts, Leith 1974) filters out features that are out of

phase in the member forecasts. These, typically finer-

scale features have little or no skill, hence AM is

characterized with a root-mean-square error (RMSE)

lower than that of a single unperturbed forecast (e.g.,

Toth and Kalnay 1997). Consequently, in the past two

decades ensemble mean forecasts became ubiquitousCorresponding author: Jing Zhang, jing.zhang98567@gmail.com
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and important products at operational forecast cen-

ters across the globe.

Notwithstanding its popularity and value, the use of

AM as an ensemble central tendency has its limitations.

As pointed out for example by Molteni et al. (1996),

Toth and Kalnay (1997), and Surcel et al. (2014),

the removal of unpredictable features in AM results in

reduced variability. In particular, the amplitude of fea-

tures that are partially predictable and thus are mis-

aligned across ensemble members is reduced in AM. In

other words, the elimination of less- or unpredictable

features makes AM unrealistically smooth both in space

and time.

For example, AM renders a sharp low pressure wave

present in all ensemble members but at various longi-

tudes as an unrealistically shallow and unrealistically

wide low pressure system (see solid blue line in Fig. 1a).

Forecast extremes are eliminated and the range of

forecast values is reduced, altering the cumulative dis-

tribution function (CDF) ofAMcompared to analysis or

individual forecast fields (Ebert 2001). This is a well

known problem that results in a loss of dynamical and

physical consistency and spatial covariance present in

the individual forecast fields and across different vari-

ables and levels in the conglomerate of features present

in AM. These are undesirable characteristics that make

AM fields confusing, misleading, and notoriously chal-

lenging to use (Ebert 2001; Knutti et al. 2010; Feng et al.

2019). The disadvantages of AM in many meteorologi-

cal applications stem from its pointwise, univariate

definition:

x
k
5

�
1

N

�
�
N

i51
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i,k
, (1)

where xi,k is a single variable at grid point k of the ith

member of an N-member ensemble. Clearly, the pres-

ence of spatially coherent structures and covariances as

in Fig. 1a is not considered in AM.

Various methods have been proposed to alleviate

the disadvantages of AM. The ensemble median was

introduced as an alternative to AM (Galmarini et al.

2004; Zhou and Du 2010). While in the presence of

outlier member forecasts the median may have some

FIG. 1. (a) Schematic of a low pressure wave (with arbitrary units of amplitude and position) represented in three

members of an ensemble forecast (solid black lines) and their traditional arithmetic mean (AM; solid blue line).

The position of the minimum value of the low pressure system in AM is marked by a dotted blue vertical line.

(b) Schematic of the ensemble members aligned (solid green lines) to the mean of their original position (marked

with a dotted red line). (c) The feature-oriented mean (FM; red solid line) is the arithmetic mean of the aligned

members. The units on the x and y axes are dimensionless.
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advantages compared to AM (Delle Monache et al.

2006), for quasi-normally distributed data, they are

statistically nearly identical. To restore the CDF that the

AMprocedure distorts, Ebert (2001) suggested to relabel

the contours in AM in such a way that the CDF in the

proposed probability-matched mean exactly matches

that in the constituent ensemble member forecasts. This

manipulation, however, restores only the CDF; it will

not undo the distortion, smoothing, and misaligned po-

sitioning of forecast features.

Recognizing the presence of spatially coherent fea-

tures in ensemble forecasts, in recent papers, Ravela

(field coalescence; Ravela 2012, 2013, 2014) and Purser

[generalized ensemble mean (GEM); R. J. Purser (2013,

unpublished manuscript)] considered the generalization

of central tendency for systems with spatially covarying

structures. Note that the new definitions of central ten-

dency given by Ravela (2012) and R. J. Purser (2013,

unpublished manuscript) are not explicit but rather

operational and use iterative variational minimization

algorithms. Field coalescence searches for the smallest

amplitude two-dimensional (2D) displacement fields

that 1) adjust all original ensemble members so their

large-scale components are aligned [field alignment

(FA) Ravela (2007)], and 2) minimize the difference

between individual displaced ensemble fields and their

mean. GEM is constructed similarly except for a slightly

different variational minimization algorithm.

Both methods require explicit knowledge of the co-

variance between forecast fields [see Eq. (8) of Ravela

(2012), and Eq. 1.5 of R. J. Purser (2013, unpublished

manuscript)]. The estimation of such covariances, de-

spite decades of efforts in ensemble-based data assimi-

lation (Hamill et al. 2001; Houtekamer et al. 2005;Wang

et al. 2013), remains a challenge. In addition, the cal-

culation of coalesced or generalized ensemble mean

fields for operational ensembles with higher model res-

olution andmore ensemble members is computationally

rather expensive. Perhaps as a consequence, neither

definition has been tested or used in practical weather

forecast applications.

Using a similar conceptual approach, here we aim to

develop an alternative operational definition for central

tendency applicable to fields with spatially coherent

structures, and for the first time, apply such a concept in

the context of weather forecasting. The new central

tendency for ensemble forecasts should filter out the

unpredictable, finer-scale features just as AM, while

retaining the predictable features with more realistic

amplitude/variance. The simplified and computationally

efficient method feature-oriented mean (FM) is intro-

duced in section 2. Unlike the methods of Ravela (2012)

and R. J. Purser (2013, unpublished manuscript), FM

uses a direct, vector-based (i.e., nonvariational) ap-

proach that requires no explicit covariance information;

instead, it exploits such information implicitly present in

the ensemble forecasts. FM is tested using operational

ensemble forecasts in section 3. A preliminary evalua-

tion, including a comparison with AM is presented in

section 4, while a summary and discussion are offered in

section 5.

2. Methodology

As highlighted in the introduction, atmospheric mo-

tions manifest in spatiotemporally coherent features

of various scales. Yet when comparing states of the

atmosphere, a large array of traditional meteorological

research and operational applications still use a grid-

pointwise approach, disregarding spatiotemporally orga-

nized structures. The concept behind FM was pioneered

by Ravela (2012, 2013, 2014) and R. J. Purser (2013, un-

publishedmanuscript) and is based on the recognition that

the AM used so widely in statistics is a pointwise measure

with limited applicability for fields with correlated data.

Before taking a pointwise mean of ensemble member

forecasts, FMfirst adjusts allmembers so their larger-scale

features align.

a. Field alignment

The assessment of the spatial displacement and the

subsequent adjustment or alignment of meteorological

features or fields is a common problem in data assimi-

lation, verification, and other applications. Features can

be characterized, for example, by their geographical

position, amplitude, or other characteristics (Hoffman

et al. 1995; Ravela 2007; Beezley and Mandel 2008).

Differences between atmospheric states (e.g., forecast

and verifying analysis 2 2D forecast error, or un-

perturbed and perturbed ensemble forecasts 2 2D per-

turbation fields) can be generally partitioned into a

positional and a residual (or amplitude) component

(e.g., Hoffman et al. 1995; Ravela 2007; Ying 2019;

M. Peña, I. Jankov, S. Gregory, S. Ravela, and Z. Toth

2019, unpublished manuscript).

FM uses the FA method (Ravela 2007; Ravela et al.

2007) to establish a 2D mapping between two fields that

are similar except some spatial displacement. Let X and

Y denote 2D fields of system variables (e.g., tempera-

ture or geopotential height) with similar but displaced

features. For example, Y is the forecast field, while X is

the targeted field (e.g., the observed or analysis field).

FA estimates a smooth 2D displacement vector field D

(see e.g., the black arrows in Fig. 3) that if applied as a

translation operation to each grid point ofY (Y adjusted

to Y0), will minimize the remaining (henceforth called
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amplitude) RMS difference between X and Y0. The

displacement vector field D and the aligned field Y0 are
derived as the solutions of a variational minimization of

the cost function in FA (Ravela 2007). The smoothness

of the displacement vector field is controlled by a spec-

trum truncation algorithm (Ravela 2012). A single tun-

able wavenumber parameter l determines the scale

above which the alignment of features between the two

fields is sought, moving the smaller-scale features along

with the larger scales, without other adjustments. More

details about the FA technique can be found in the

above references.

Unlike other techniques used to establish spatial re-

lationships between two fields primarily used in error

decomposition studies (e.g., Hoffman et al. 1995; Du

et al. 2000; Nehrkorn et al. 2003, 2014), FA uses only one

tunable parameter (i.e., the unique smoothing parame-

ter l) and does not rely on posterior (i.e., after align-

ment) forecast error covariance or any other ancillary

information. FA has been used in a wide range of ap-

plication areas including data assimilation (Ravela et al.

2007), verification (Ravela 2007, 2014; M. Peña, I.

Jankov, S. Gregory, S. Ravela, and Z. Toth 2019, un-

published manuscript), nowcasting (Ravela 2012), spa-

tiotemporal error propagation (Feng et al. 2017), among

others (Ravela 2015). For easy access by the community,

the FA technique was ported into the Developmental

Testbed Center (DTC) Code Repository in a study

funded by the DTC Visitor Program (PI: S. Ravela).

b. Feature-oriented mean

The key concept behind FM is to align the spatially

coherent larger scale and presumably more predictable

features in individual ensemble member forecasts to

their mean position, while leaving the finer scales that

are deemed unpredictable unaligned. As a result, the

mean of the aligned, presumably more predictable fea-

tures in FM retain more the amplitude and the coarser-

scale structure of the features in the original member

forecasts, while the presumably unpredictable finer-

scale, unaligned features are smoothed out in FM as

well as in a traditional AM.

Algorithmically, assume that xj is a 2D variable field

of a randomly selected member of an N-member en-

semble xi (i 5 1, 2, 3, . . . , N, i 6¼ j). The working defi-

nition of FM consists of the following five steps (cf.

schematic Fig. 2):

1) Compute the displacement vectorDji between xj and

each of the other N 2 1 members xi by using the FA

technique with the smoothing parameter l.

2) Calculate the average of displacement vectors Dj 5
(1/N)�N

i51Dji. The termDj represents the displacement

of features in xj compared to themean of the position of

features in all ensemble members.

3) Adjust member xj by transposing its 2D field in space

by the displacement vectorDj: x
0
j ) xj1Dj. This will

align the position of features in member xj to the

mean of their position in the entire ensemble.

4) Repeat steps 1–3 for each member of the ensemble.

The aligned members (illustrated by the green lines

in Fig. 1b) will differ only in the amplitude of their

features, apart from inconsistencies (i.e., unpredict-

able noise) on the smaller scales that are unaffected

by the FA procedure.

5) FM is defined as the arithmetic mean of all aligned

ensemble members: x5 (1/N)�N

j51x
0
j (see red solid

line in Fig. 1c).

Note that the adjusted individual ensemble members

(i.e., x0j) are intended only for the derivation of FM, not

for other applications.

As pointed out earlier, FM is conceptually very similar

to Ravela’s (2012) field coalescence and R. J. Purser’s

(2013, unpublished manuscript) GEMmethods. Both FM

andfield coalescence calculate themean amplitude field by

aligning features in each ensemble field to the mean of

their position in the individual fields, using the FA tech-

nique of Ravela (2007) as an alignment tool. Field coa-

lescence, however, solves a more complex variational

minimization problem to estimate the mean amplitude

field and displacement fields for each member at once. In

contrast, FM solves a set ofmuch simpler FAminimization

problems followed by a simplified vector calculation to

derive an estimate for mean position, after which the

original members are transposed with their corresponding

displacement vector fields. Moreover, unlike both the field

coalescence and GEM algorithms, FM does not require

covariance information about the state being estimated.

FIG. 2. Flowchart of the FM algorithm.
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3. Experimental setup

The FM algorithm described in section 2b will be

evaluated and compared to AMusing forecasts from the

National Centers for Environmental Prediction (NCEP)

Global Ensemble Forecasting System (GEFS; Toth and

Kalnay 1993, 1997; Zhu et al. 2012; Zhou et al. 2016,

2017). The 20-member 500-hPa geopotential height

(GH) 0000 UTC GEFS forecasts from a 25-day sample

period (1 October–25 October 2013) will be compared

to corresponding verifying analysis fields from the

Global Forecast System (GFS) on a common 18 hori-
zontal resolution grid. Ensemble forecasts offer an

ideal testing ground for the use of FM due to the co-

herence of larger-scale and more predictable features

across ensemble members that FM can readily detect.

Ideally, displacement vectors could be defined in 4D

(3D in space and 1D in time). Note that at the time of

writing, only a 2D version of FA is available. As the

amount and complexity of horizontal variability much

exceed that in the vertical, the approximation of the 2D

application may only have a small effect. As for the time

dimension, as long as ensemble perturbations are co-

herent in 4D, 2D horizontal plane alignments will nec-

essarily lead to the alignment of features in time as well.

The only free parameter in FM is the smoothing pa-

rameter l of FA. Ideally, one would want to choose

this parameter so the displacement vectors reflect dif-

ferences in the position of the partially predictable

features. This is feasible via a lead time dependent

specification of l, exploiting the strong dependence of

predictability on scales (Boer 2003). For simplicity, in

the initial tests presented in section 4, for all lead times,

l is set to be 128 (;300-km wavelength), covering part

of the mesoscale and larger-scale systems.

4. Results

After the visual demonstration in a real case scenario,

FM will be quantitatively evaluated by assessing (i) how

much more variance is retained by FM versus AM

[by comparing the wavenumber spectrum of AM and

FM with that of the analysis fields, e.g., Adams and

Swarztrauber (1997)]; and (ii) how much, if any, the

performance of FM is degraded compared to AM [pat-

tern anomaly correlation (PAC) andRMSE; e.g., Buizza

et al. (2005)].

a. A case study

The transposition of features in an individual ensem-

ble member to the mean position of features in all

members for a case of a 7-day Northern Hemisphere

(NH; 208–808N) forecast initialized at 0000 UTC

12 October is shown in Fig. 3. The original forecast

(blue) is transposed (red, step 3 in FM algorithm, cf.

Fig. 2) with the displacement vector field (black ar-

rows, step 2). The short displacement vectors and

correspondingly small displacement of contour lines

over the Atlantic indicate that in that region, features

in the selected ensemble member (member 10) align

well with the mean position of features in the rest of

the ensemble members. On the contrary, the selected

ensemble member appears to be an outlier over the

Pacific, as manifested by the long displacement vec-

tors and correspondingly large displacement of con-

tour lines around 1608W. This is confirmed by Fig. 4a

where the heavy magenta line for member 10 is seen

as an outlier among the other members.

As seen in Fig. 4b, the FM algorithm aligns the fea-

tures in member 10, along with those in the rest of the

members, with the mean position of the features in the

original members. As seen in Fig. 4c, this results in an

FM field that when compared with AM, better reflects

the consensus in the position, and especially in the am-

plitude of features in the original ensemble. In other

words, FMbetter preserves the consensus in the features

among the averaged fields, a potential advantage in ei-

ther synoptic forecasting or climatological compositing

applications.

b. Amplitude as a function of lead time and scales

In Fig. 5 we quantify how much more total amplitude

(defined against the climatological mean) FM retains

over AM as a function of lead time, averaged over the

global domain and all 25 cases. The results (Fig. 5a)

show that the mean amplitude of FM andAMmaintains

lower than that of analysis and the differences expand

with longer lead times. It is because more scales of

features in forecasts become less predictable and are

thus smoothed as the lead time increases. However, the

amplitude of FM remains higher than that of AM for all

lead times (Fig. 5a). The relative improvement of FM

using analysis as a reference monotonically increases to

about 10% at day 10 (Fig. 5b).

The spectral distribution of analysis and various lead

time AM (blue) and FM (red) forecasts averaged over

25 cases is displayed in Fig. 6. Probably due to the ini-

tial approximately linear evolution of perturbations

(Gilmour et al. 2001), at day 2, only minor differences

and only on the finest scales are seen between the two

types of mean forecasts. As with increasing lead time

nonlinearities emerge on larger scales, the variance in

AM falls below that of natural variability in the analysis

(black), and at progressively larger scales. FM, mean-

while, retains more natural variability on those scales,

due to the alignment of larger-scale features before the

mean of the member forecasts is taken. Statistically
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significant differences (according to a standard t test at

the 0.05 significance level) first appear on fine scales,

extending with increasing lead time to larger, up to

wavenumber-7 scales. Nonetheless, the difference be-

tween FMandAMvariance is relatively small compared

to their distinction from the analysis. The variance in

FM is expected to be below that of analysis fields due

to the removal of finer-scale features that remain fully

out of phase even after the alignment of the predict-

able scales.

c. Error metrics

It is well understood that the RMSE in sample-based

statistical estimates of the expected value of a quantity is

minimized by AM (e.g., Leith 1974; Li et al. 2018; Feng

et al. 2019). This is due to the (sample size dependent)

reduction of natural variance (i.e., noise) in the sample.

Any deviation from the AM formula in Eq. (1) can only

increase RMSE in the estimate of the expected value.

Howmuch FMmay increase the error found inAMwhile

retaining larger amplitudes (Fig. 5) and more variance

(Fig. 6)? Figure 7 illustrates the mean of 500-hPa NH

geopotential heightRMSE and ensemble spread (Fig. 7a),

and PAC (Fig. 7b) for AM and FM. As the proximity of

the blue (AM) and red (FM) lines indicate, forecast per-

formance is only slightly affected by the retention of more

variance in FM. Results for the SH (not shown) are

similar.

Note that the alignment of members is tantamount to

the elimination of positional perturbations. As seen

from Fig. 7, this leads to an increase in the skill of the

aligned members (dashed red) compared to the original

members (dashed blue), closing much of the skill gap

present between the original perturbed and AM (solid

blue) forecasts.At the same time, FMdeceasesmore than

50% the spread of members around their respective

FIG. 3. The 7-day Northern Hemisphere extratropical (NH; 208–808N) 500-hPa geo-

potential height (GH) forecast from a randomly selected ensemble member (blue contours,

initialized at 0000 UTC 12 Oct 2013), its displacement vector field (black arrows;km), and the

field alignedwith themean of the position of features in all ensemblemembers (red contours).
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means (FM for aligned members, solid red, or AM for

original members, solid blue). The much reduced spread

of the aligned members around FM reflects the uncer-

tainty only in the amplitude or structure (but not the

position) of forecast features.

Interestingly, in cases with strong observed anomalies

(i.e., where the verifying analysis has an anomaly larger

than 1.5 climatological standard deviation), FM (red line

in Fig. 8) has a lower RMSE than AM (blue line). The

error reduction peaks at 10% around day 7, with FM

error lower than AM error at 70% of all NH grid points.

The results for the SH (not shown) are similar.

With l 5 128, FM is expected to perform best when

synoptic scales (;1000km) become partially predictable.

This is consistent with results presented in Figs. 5–8,

showing the strongest impact beyond day 4. Shorter lead

times are characterized with quasi-linear evolution of

ensemble perturbations so FM and AM have small dif-

ferences. At extended ranges (e.g., 10 days and beyond),

nonlinear saturation has a strong influence on the evo-

lution of perturbations even at the largest scales. As

forecast skill diminishes, features across ensemble mem-

bers become uncorrelated, preventing the variational FA

algorithm in step (1) of the FMalgorithm to converge to a

displacement vector field solution. Consequently, FM

may no longer be applicable at these extended ranges.

5. Conclusions and discussion

Arithmeticmean (AM), when applied to an ensemble,

reduces forecast error by filtering out part of the un-

predictable variance present in individual members

(i.e., waves that are out of phase across members). Not

surprisingly, AM gained widespread use in weather

forecasting. On the other hand, when applied in a tra-

ditional, pointwise sense, AM reduces the amplitude,

and distorts the structure of partly predictable features

that are present in the perturbed ensemble forecasts at

FIG. 4. Spaghetti plot for the 5800-m contour of the 500-hPa GH forecast displayed in Fig. 2 for (a) 20 raw and

(b) aligned ensemble members, and (c) the arithmetic mean of the original (blue; AM) and aligned members (red;

called FM). For reference, the contour for the verifying analysis is also shown (black).
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somewhat different locations and with somewhat vary-

ing structures. Recognizing the spatiotemporal coher-

ence of partly predictable features across ensemble

members, we propose to spatially collocate such fea-

tures before their mean is taken. In the new ensemble

central tendency that we call feature-oriented mean

(FM), all larger-scale forecast features appear at the

mean of their position in the individual members,

represented with an amplitude that is the mean am-

plitude of features aligned in all members. Instead of

FIG. 6. The spherical harmonic power spectrum of 500-hPa GH over the globe for AM (blue) and FM (red) forecasts, and analyses

(black solid lines) at different lead times. The black dashed lines indicate the scales at which the spectral variance of FM and AM are

statistically different at the 5% significance level.

FIG. 5. (a) Global and sample (1–25 Oct 2013) mean amplitude of 500-hPa GH analysis (black dashed), AM

(blue), and FM (red) anomalies against the climatological mean as a function of lead time. (b) Amplitude per-

centage of AM and FM relative to analysis as a function of lead time.
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averaging a collection of variables to estimate the ex-

pected value of assumedly uncorrelated spatial grids like

in AM, FM estimates the expected feature of system

variables, composed of features with covarying elements.

FM is based on the same concepts as central tenden-

cies proposed by Ravela (2012; field coalescence) and

R. J. Purser (2013, unpublished manuscript; GEM).

However, these methods have not found their way into

meteorological applications, probably due to their com-

plexity and high computational demand. In contrast, FM is

defined with a simplified and computationally efficient

method, via a direct vector-based calculation. Particularly,

FMdoes not require the amplitude covariance information

that, as a prior estimation, is critical in the coalescence and

GEM methods.

On the computational side, the bulk of the FM algo-

rithm (steps 1–4 in section 2b) pertains to single en-

semble members, perfectly suited for parallel processing

on individual single cores. A further speed-up can be

achieved if data are processed sequentially by lead time

where the displacement vector solution from the previ-

ous lead time can be used as a high-quality first guess for

FA calculations at the next lead time.

Results from preliminary tests using operational NWP

forecasts from the NCEP GEFS indicate that by the

alignment of coherent larger scale, partly predictable

features, FM retains up to 14% more variability than

AM, resulting in features with more realistic amplitude.

Meanwhile, forecast performance is not compromised as

FM RMSE and PAC is hardly changed compared to

FIG. 7. Temporalmean (1–25Oct 2013) (a) root-mean-square error (RMSE; solid lines) and spread (dotted lines)

and (b) pattern anomaly correlation (PAC; solid lines) for AM (blue lines) and FM (red lines) for 500-hPaGHover

the NH extratropics. The mean of the RMSE and PAC of the original (blue dashed lines) and aligned perturbed

ensemble forecasts (red dashed lines) are also shown.

FIG. 8. (a) AM and FM RMSE (solid lines) as in Fig. 7a, but restricted for grid points where the anomaly of the

verifying analysis is greater than 1.5 times the climatological standard deviation. The dashed curve represents

the difference between the two error curves as a percentage of AM error. (b) Percentage of grid points where the

absolute error in FM is lower than in AM.
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AM. Interestingly, FM outperforms AM under ex-

treme observed conditions, particularly for medium-

range (i.e., 3–8-day lead time synoptic scale) forecasts.

For simplicity, the smoothing coefficient in the re-

ported FA experiments was fixed over all lead times.

Ideally, as a function of lead time, one would increase

the level of smoothing (i.e., numerically lower the

smoothing parameter l), making the displacement vec-

tor field to initially reflect most, while later only coarser

scales, in accordance with the upscale propagation of

forecast errors with increasing lead time. At long lead

times, all predictability is lost and ensemble members

constitute a random draw from climatology (i.e., no

coherency in structures across ensemble members).

Smoothing can then approach its maximum level (i.e.,

only a single vector, or no spatial adjustment at all over

the entire domain), at which stage FM asymptotes to

AM. As is the case with any forecast, a reduction or

elimination of model systematic errors may further im-

prove the performance of FM.

Though FM was demonstrated with 500-hPa height

data, it can be applied to any variable of interest, in-

cluding noncontinuous variables such as precipita-

tion.1 Besides dynamically generated ensembles like

the GEFS, FM can also be used to derive a consensus

forecast from any set of NWP or other products like a

multimodel superensemble (Ebert 2001; Krishnamurti

et al. 2016). FM is expected to provide the most likely

position and amplitude of severe weather events such

as the evolution of a tropical storm prior to landfall,

or a frontal zone with precipitation approaching a

metropolitan area. Looking beyond weather forecast-

ing, FM may be applicable in a wide array of synoptic

and other type of climatology studies where a sample-

based estimate of the typical behavior of various phe-

nomena such as landfalling hurricanes is sought. Once

cases with the targeted phenomena present anywhere

over a common domain are selected, with an appro-

priate level of smoothing, FM can be used to collocate

and then average any feature of interest.
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