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ABSTRACT: Operational and research applications generally use the consensus approach for forecasting the track and

intensity of tropical cyclones (TCs) due to the spatial displacement of the TC location and structure in ensemble member

forecasts. This approach simply averages the location and intensity information for TCs in individual ensemble members,

which is distinct from the traditional pointwise arithmetic mean (AM) method for ensemble forecast fields. The consensus

approach, despite having improved skills relative to the AM in predicting the TC intensity, cannot provide forecasts of the TC

spatial structure. We introduced a unified TC ensemble mean forecast based on the feature-oriented mean (FM) method to

overcome the inconsistency between the AM and consensus forecasts. FM spatially aligns the TC-related features in each

ensemble field to their geographicalmean positions before the amplitude of their features is averaged.We select 219 TC forecast

samples during the summer of 2017 for an overall evaluation of the FM performance. The results show that the TC track

consensus forecasts can differ fromAM track forecasts by hundreds of kilometers at long lead times. AM also gives a systematic

and statistically significant underestimation of the TC intensity comparedwith the consensus forecast. By contrast, FMhas a very

similar TC track and intensity forecast skill to the consensus approach. FM can also provide the corresponding ensemble mean

forecasts of the TC spatial structure that are significantlymore accurate thanAM for the low- and upper-level circulation in TCs.

The FM method has the potential to serve as a valuable unified ensemble mean approach for the TC prediction.

SIGNIFICANCE STATEMENT: The ensemble mean forecast of tropical cyclones (TC) remains challenging. The

crucial problem is the traditional arithmetic mean (AM) as a pointwise statistic disregards the geographical displace-

ment of TC position and structure in individual ensemble members. This results in over smoothing and distortion of TC

structure, particularly degrading the TC intensity forecast skill. Although the use of a consensus approach can improve

TC track and intensity forecasts, it cannot provide the ensemble mean of TC spatial structure. Our study introduces a

unified ensemble mean scheme for TC forecasts based on the feature-oriented mean (FM) technique. FM can provide

the TC track and intensity forecasts and the corresponding TC spatial structure. FM makes a spatial-dependent

alignment of TC-related features in each ensemble field to their mean position before averaging the amplitude of TC

features. FM has very similar forecast skill of TC track and intensity as the consensus approach. Meanwhile, it signifi-

cantly outperforms AM in predicting the TC spatial structure of variables such as pressure and wind.
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1. Introduction

Tropical cyclones are severe weather events and have huge

impacts on human activities and property. Tropical cyclone

activities involve complex dynamic and thermodynamic pro-

cesses across multiple spatiotemporal scales (Yanai 1964;

Rotunno and Emanuel 1987; Bryan and Rotunno 2009).

Although numerical weather predictionmodels have improved

significantly in recent years, the simulation and prediction of

tropical cyclones are still constrained by deficiencies in the

physics and dynamics of the models. It is therefore still chal-

lenging to predict the track, intensity and structure of tropical

cyclones using a single deterministic forecast.

The ensemble forecast technique has led to significant

progress in weather (Toth andKalnay 1993, 1997;Molteni et al.

1996; Zhu et al. 2012; Feng et al. 2014; Yuan et al. 2018) and

climate (Goddard et al. 2001; Doblas-Reyes et al. 2013; Zhang

and Zhi 2015; J. Zhang et al. 2015; Hou et al. 2018; Yuan et al.

2018) predictions in recent decades. Ensemble forecast systems

for tropical cyclones have been developed and advanced in

various operational centers basedon both global (Puri et al. 2001;
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Hamill et al. 2011; Li et al. 2016) and regional (Zhang and

Krishnamurti 1999; Zhang et al. 2014; H. B. Zhang et al. 2015;

Lu et al. 2016; Li et al. 2019) forecast models.

A notable advantage of ensemble forecasts over determin-

istic forecasts is their ability to extract the possible true states

from the subspace of ensemble members and to estimate the

uncertainty with the ensemble spread (Buizza 1997; Toth and

Kalnay 1997; Toth et al. 2001; Zhu et al. 2002). A typical ex-

ample is the prediction of the track and intensity of tropical

cyclones. The most widely used approach to derive such fore-

casts for tropical cyclones from individual ensemble members

is the so-called consensus forecast. The consensus forecast

explores how to assign the optimum weights on each forecast

member, including equal or unequal weights, to average the

track and intensity of tropical cyclones from individual forecast

members (Goerss 2000; Goerss et al. 2004; Sampson et al. 2005;

Burton 2006; Krishnamurti et al. 2010; Qian et al. 2012; Dong

and Zhang 2016). The best forecast members can be selected in

advance by verifying the 12-h lagged real-time ensemble

forecasts and removing any apparent outliers (Qi et al. 2014;

Dong and Zhang 2016; Zhang and Yu 2017). A variety of

studies have shown that the consensus approach can signifi-

cantly improve the accuracy of track and intensity forecasts for

tropical cyclones relative to deterministic forecasts (Goerss

2000; Sampson et al. 2005; Krishnamurti et al. 2010; Dong and

Zhang 2016).

In ensemble forecasting, the most widespread approach to

predict the future states of three-dimensional (3D) spatial

fields is to take the arithmetic mean (AM) of the ensemble

member fields. The AM is a pointwise statistical concept pro-

viding the best sample-based estimate of the expected value of

any single variable (Leith 1974; Li et al. 2018; Feng et al. 2019).

The AM filters out any unpredictable features in the forecast

member fields and reduces the forecast errors relative to de-

terministic forecasts (Toth and Kalnay 1997; Buizza et al. 2005;

Feng et al. 2020). However, the application of the AMmethod

to predictions of tropical cyclone structures has a well-known,

but as yet unresolved, problem.

The tropical cyclones in individual forecast members have

both position and amplitude-related errors (Hoffman et al.

1995) and these errors amplify as the forecast lead time in-

creases. The use of the AM implements a pointwise average

that does not account for the deviations in the locations of

tropical cyclones in ensemble fields and the spatial coherence

of atmospheric variable fields. Such averaging may cause un-

realistic smoothing and distortion of the structure of the

tropical cyclone and an underestimation of the intensity. As a

consequence, operational ensemble predictions of tropical

cyclones routinely use the respective consensus mean forecast

of the track and intensity of tropical cyclones rather than di-

rectly deriving these parameters from the AM field of the

tropical cyclone.

A crucial problem in forecasting the tropical cyclone en-

semble mean is the inconsistency of the consensus forecast of

the track and intensity of the tropical cyclone compared with

the AM forecast of the structure of the tropical cyclone. In

other words, the track of the tropical cyclone in the AM

forecasts may deviate from the consensus track, and the

physical structure of the tropical cyclone in the AM method

may not reflect the tropical cyclone intensity obtained from the

consensus method.

To eliminate the positional deviations of the tropical cyclone

among the ensemble members, global and regional forecast

systems at the National Centers for Environmental Prediction

use a tropical cyclone relocation procedure for ensemble ini-

tialization and data assimilation (Liu et al. 2006; Tallapragada

et al. 2015). This method removes the tropical cyclone 3D

vortex structure from each ensemble member field as a whole

and relocates them to the same observed location of the

tropical cyclone center for a better estimation of the back-

ground error covariance (Lu et al. 2016; Feng andWang 2019).

In addition to the model initialization, this relocation proce-

dure can also be applied to the postprocess and diagnostics for

ensemble forecasts. Averaging these relocated tropical cyclone

ensemble members may give a more realistic ensemble mean

structure of the tropical cyclone vortices. However, an appar-

ent problem is that the relocation procedure results in dis-

continuities between the structures within and outside a

tropical cyclone in individual ensemble members. This prob-

lem is generally remedied by spatial smoothing (Liu et al.

2020). The simple relocation procedure also assumes that all

the structures related to tropical cyclones, such as the inner

core and the environment in each member, are shifted by the

same displacement vector, which is unrealistic.

We propose a unified ensemble mean forecast for tropical

cyclones based on the feature-oriented mean (FM) method

(Feng et al. 2020). In contrast with the traditional AMmethod,

the FM method aligns the features related to the tropical cy-

clone in each member field—including the inner core, outflow,

and large-scale environment of the tropical cyclone—to their

respective mean position across all members before taking the

mean of the alignedmembers. Unlike the relocation procedure

as an adjustment or shift based on the central location, the FM

uses a feature-based 3D vector alignment that takes the spatial

coherence of the variable fields into account (Feng et al. 2020).

The FM method eliminates the positional deviations of the

tropical cyclone across ensemble members and averages the

amplitude of features, ensuring realistic smoothing and spatial

continuity of the tropical cyclone structure. The track and in-

tensity of the tropical cyclone are then derived directly from

the FM forecast field, preserving the consistency between the

track and intensity of the tropical cyclone and its structure.

The paper is organized as follows. Section 2 briefly intro-

duces the simplified and computationally efficient FMmethod.

The experimental setup, including the selection of the case

studies, the data for forecasts and verification, and the evalu-

ation metrics, are presented in section 3. Section 4 evaluates

the FM for the prediction of tropical cyclones and compares it

with the consensus and AM approaches. A summary and dis-

cussion are provided in section 5.

2. Methodology

The atmosphere presents organized structures with spatio-

temporal coherence. It is widely recognized that atmospheric

forecast errors consist of both position- and amplitude-related
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components (Hoffman et al. 1995; Ravela et al. 2007; Beezley

and Mandel 2008; Feng et al. 2020; Ji et al. 2020). Most tradi-

tional operational and research applications still use the AM

forecast, which calculates the pointwise average of ensemble

fields, disregarding the spatiotemporal coherence of variable

structures. It unrealistically smooths the features in ensemble

fields in both space and time. The concept of the FMmethod is

to adjust the features in each ensemble field to their mean

position before taking the mean of the amplitude (Feng et al.

2020). The adjustment of the features in each forecast field is

carried out using the field alignment technique.

a. Field alignment

The field alignment technique was pioneered by Ravela et al.

(2007). Its basic concept is to establish a two-dimensional (2D)

mapping between two fields with similar, but spatially mis-

aligned, features. We use X and Y to represent the original and

target 2D variable fields, respectively, with similar, but dis-

placed, features. Assuming that the features inX can be aligned

along a 2D vector field (i.e., the displacement vector), forming a

new 2D variable field X0, then field alignment variationally

solves the optimum displacement vector field to minimize the

root-mean-square difference between the aligned field X0 and
the target field Y. The optimally aligned field X0 is also derived

as an output solution of the field alignment technique.

Unlike other techniques primarily applied to the adjustment

of the spatial structure between two fields (e.g., Hoffman et al.

1995; Du et al. 2000; Nehrkorn et al. 2003, 2014), the field

alignment technique does not rely on the estimated posterior

covariance of the field after alignment and has a unique tunable

parameter (i.e., the wavenumber parameter l). The wave-

number parameter l in the field alignment technique controls

the smoothness of the displacement vector. The alignment of

features above the scale of l in the original field is sought, while

the smaller scale features are moved with the larger scales. An

optimum value of l generally distinguishes the large-scale well-

organized features and the small-scale random structures.

More details about the field alignment algorithm can be

found in Ravela et al. (2007) and Ravela (2014). The field

alignment technique has been applied to a wide variety of

areas, including data assimilation (Ravela et al. 2007), forecast

verification (Ravela et al. 2007; Ravela 2014; Jankov et al.

2020), nowcasting (Ravela 2012), and spatiotemporal error

propagation (Feng and Toth 2017).

b. Feature-oriented mean method

The key concept behind the FM method is to align the fea-

tures in each ensemble field to their mean position (Feng et al.

2020). The traditional AMmay not be able to characterize the

positional mean of features accurately due to the distorted

structure. The FM method adopts a simple and computation-

ally efficient vector operation to estimate the displacement of

features in individual ensemble fields from the mean position

and makes appropriate adjustments.

Following the schematic diagram in Feng et al. (2020, Fig. 2),

we assume xj is a 2D variable field of a randomly selected

member from anN-member ensemble (j5 1, 2, 3, . . . ,N). The

FM method consists of the following five steps.

1) Compute the displacement vector Dji between the given

ensemble field xj and all other fields xi (i 5 1, 2, 3, . . . , N)

using the field alignment technique with a specified wave-

number parameter l.

2) Calculate the average of the derived displacement vector

field Dji, where Dj 5 (1/N)�N

i51Dji. The term Dj is an

estimate of the translation operator that indicates how the

given ensemble field xj is aligned to the mean position.

3) Align the given ensemble field xj to the mean position along

the mean displacement vector Dj, deriving the aligned

member x0j.
4) Repeat procedures 1–3 for each ensemble field xj (j 5

1, 2, 3, . . . , N).

5) Calculate the arithmetic mean of all the alignedmembers x0j
to derive the FM field x5 (1/N)�N

j51x
0
j.

The FM method is conceptually very similar to the field coa-

lescence method proposed by Ravela (2012). Both the field

coalescence and the FM method align the features in each

ensemble field to the mean of their positions using the field

alignment technique as an alignment tool. However, as dis-

cussed in Feng et al. (2020), the field coalescence method

solves a more complex variational minimization problem. The

cost function to beminimizedmeasures the average distance of

the mean field from the individual aligned ensemble fields

standardized by the posterior ensemble covariance. By con-

trast, the FM method solves a set of much simpler field align-

ment minimization problems and then makes a simplified

vector calculation to estimate the mean position regardless of

the posterior ensemble covariance.

Tropical cyclones have complex dynamic and thermody-

namic structures that involve multivariate and multilayer in-

teractions. The minimum sea level pressure (SLP) is a crucial

variable that indicates the location, intensity and primary cir-

culation of tropical cyclones. The SLP is also a continuous

smooth field, making it appropriate for the field alignment and

the FMmethod. Therefore a set of field alignment calculations

in the FM method is implemented for the variable SLP to

derive the displacement vectors of each ensemble member.

The displacement vectors for all other variable fields at dif-

ferent levels are not calculated, but the vectors from the vari-

able SLP are used directly for each corresponding ensemble

member. This FM scheme maintains the integrity of the spatial

structure of tropical cyclones and the cross-variable covariance

relationship.

3. Experimental setup

a. Selection of case studies

To evaluate the performance of the FMmethod as applied to

predictions of tropical cyclones, we selected 25 tropical cy-

clones over the North Atlantic Ocean and the western and

eastern North Pacific Ocean from July to September 2017. This

time period was selected because there were numerous very

intense and long-lasting tropical cyclone activities over the

tropics, such asHurricanesHarvey and Jose, and Super Typhoon

Noru, which caused catastrophic losses of both property and life.

Figure 1 shows the 6-hourly observed tropical cyclone tracks of
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all the selected cases. A total of 219 forecast samples are se-

lected for the 25 tropical cyclone case studies, all of which

were initialized at 0000 or 1200 UTC between 25 July and

20 September 2017. The forecast samples have initial ob-

served tropical cyclone intensities reaching at least tropical

storm strength. When the observed tropical cyclone is weaker

than the tropical storm strength, the forecasts at the same

valid time would be omitted. Therefore, the valid number of

forecast samples decreases for longer lead times.

b. Forecast and verification data

The ensemble forecast data used in this study are from the

Global Ensemble Forecast System of the National Centers for

Environmental Prediction (Toth and Kalnay 1993, 1997; Zhu

et al. 2012; Zhou et al. 2016, 2017). The real-time operational

Global Ensemble Forecast System consists of 20 perturbed

ensemble members and has a semi-Lagrangian horizontal

resolution of T574 (;34 km) and 64 vertical levels (Zhou et al.

2017). The forecast data used here have homogeneous hori-

zontal grids with (0.58 3 0.58) resolution and a 5-day forecast

lead time at an interval of 12 h.

The verification for the tropical cyclone structure uses an

independent dataset which is the initial analysis of the op-

erational control forecasts from the European Centre for

Medium-Range Weather Forecasts (ECMWF). The data have

a horizontal resolution of spectral triangular truncation T639

(;32 km; Buizza 2014) and are interpolated to the same spatial

resolution (0.58 3 0.58) as the forecast verification. Both the

forecast and verification data can be downloaded from the

THORPEX Interactive Grand Global Ensemble (TIGGE)

website (http://apps.ecmwf.int/datasets/data/tigge). The tropi-

cal cyclone track and intensity forecasts are verified against

the best track dataset over the western North Pacific Ocean

and the North Atlantic and eastern Pacific oceans. The

former is issued by the Joint Typhoon Warning Center

(www.metoc.navy.mil/jtwc/jtwc.html?western-pacific) and

the latter two are from the National Hurricane Center

(www.nhc.noaa.gov/data/#hurdat). The best track dataset

contains comprehensive information for each storm, including

the location, maximum winds and central pressure. The posi-

tion of the tropical cyclone center in forecasts is defined using a

simple local extreme method (Ryglicki and Hart 2015). First,

the tropical cyclone center in the best track dataset at the same

valid time is used as a first guess and the minimum SLP is

searched over a circle of radius (;500 km). If the minimum

SLP is lower than that of each grid point along the 100 km

radius, the corresponding position is adopted as the tropical

cyclone center. Otherwise, the resulting latitude and longitude

FIG. 1. The 6-hourly observed tropical cyclone tracks from the best track dataset. Atlantic Ocean (AL), eastern Pacific Ocean (EP), and

western Pacific Ocean (WP). The numbers in the parentheses indicate the number of forecast samples for each tropical cyclone.
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were used as the next guess. The use of the 100-km radius is to

confirm that the searched minimum SLP is a low pressure

center. This step also ensures that the tropical cyclone center

can be searched outward if the storm is not found within the

500-km radius.

c. Evaluation metrics

We compare the FM method against the consensus ap-

proach in tropical cyclone track and intensity forecasts. The

consensus forecast uses the faster, equal-weight mean of all

ensemble members, as preferred by the operational centers

(Goerss 2000; Goerss et al. 2004; Sampson et al. 2005; Burton

2006; Krishnamurti et al. 2010). The tropical cyclone track

errors are calculated using the great circle distance. The trop-

ical cyclone intensity is represented by the central minimum

SLP.We compared the FMmethod against the traditional AM

in tropical cyclone structure forecasts using the root-mean-

square errors (RMSEs) of the SLP and the wind fields at 10m

and 500 hPa as metrics.

4. Results

a. Optimizing the wavenumber parameter l

The unique wavenumber parameter l is tuned in the field

alignment algorithm. To estimate the optimum parameter for

the alignment of the member fields in the FM algorithm, we

select five forecast cases of the SLP at the 60-h1 lead time

initialized from 0000 UTC 1 August 2017 to 0000 UTC

5 August 2017 at a 24-h interval. Each case has 20 ensemble

forecasts. These global ensemble forecasts are aligned to the

ECMWF analysis fields at the same valid time using the field

alignment method with different values of l. The key to the

performance of the FM method is the accuracy of the esti-

mated mean position for ensemble members and the effec-

tiveness of the alignment of each ensemble member to their

mean position. The expected mean positions of features

among a group of ideal ensemble members would be very close

to those presented in the analysis field. Therefore, we use the

analysis field as an alternative target field to test the optimal

value of l for the alignment of ensemble forecasts. The global

RMSE between the aligned forecast fields and the analysis

fields averaged over all the samples (i.e., 203 5) are calculated

as a function of l (see the second row of Table 1). Because this

study is focused on tropical cyclone forecasts, the RMSE av-

eraged over a 600 km 3 600 km domain surrounding the

Nalgae and Noru tropical cyclones in these global ensemble

forecasts of the SLP is also assessed to optimize the value of l.

TheRMSE variation as a function of l is also evaluated for each

case, which produces qualitatively similar results as the sample

mean result (see Table 2).

Both results show that the RMSE is substantially reduced

even after aligning the SLP fields using l 5 64. The RMSE

decreases further with increasing values of l, but the decrease

in RMSE with increasing l becomes much more gradual for l.
192. This value of 192 roughly corresponds to 200-km scale

motion, which means that the finer (,200 km) scales are al-

most unpredictable at 2.5 days (60 h) and their alignments are

nearly random and useless. Alignment should therefore be

carried out for only larger scale (.200 km) features that are

fully or partially predictable. The following results use the

wavenumber parameter l 5 192 for the field alignment algo-

rithm taking into consideration the computational expense. A

larger optimum value of l may be used in a higher resolution

model in which the finer scale features are better resolved and

more predictable.

Figure 2 shows an example of the alignment of an arbitrarily

selected 2.5-day ensemble forecast valid at 1200 UTC 3August

2017 against the analysis. It shows that the original forecast

(red contours) and the analysis (black contours) are similar,

but show some spatial displacement. For example, Typhoon

Noru over the western North Pacific presents an apparent

eastward positional error in the forecast relative to the analysis

(green box in Fig. 2a and enlargement in Fig. 2c). Such a dis-

placement throughout the globe is well described by the dis-

placement vectors (blue arrows), with the direction and length

of the arrows indicating the displaced direction and distance,

respectively. The aligned field (blue contours) obtained using

the field alignment technique shows a much better positional

match of features to the analysis field (black contours; Fig. 2b).

The SLP structure associated with Typhoon Noru in the fore-

cast is aligned to a similar location as in the analysis, including

the vortex and the large-scale circulation (green box in Fig. 2b

and enlargement in Fig. 2d).

b. Alignment of ensemble members

Before a quantitative evaluation of the FM is carried out, we

provide a virtual demonstration of the alignment of the en-

semble members to the mean position. Figure 3 shows the SLP

in the original and aligned ensemblemembers at lead times of 1

(solid lines), 2.5 (dashed lines), and 5 (dotted lines) days for

TABLE 1. Sample-mean global and regional RMSE (hPa) of the 2.5-day original ensemble member forecasts and the corresponding

aligned forecasts as a function of the wavenumber parameter l for the SLP. The regional RMSE is for a 600 km 3 600 km domain

surrounding the tropical cyclones in the global forecasts. The initial time of the forecast cases ranges from 0000 UTC 1 Aug 2017 to

0000 UTC 5 Aug 2017 at an interval of 24 h. Each case has 20 ensemble member forecasts.

Original l 5 64 l 5 128 l 5 192 l 5 256

Global RMSE (hPa) 3.10 2.66 1.67 1.60 1.58

Tropical cyclone RMSE (hPa) 2.86 2.12 1.28 1.19 1.14

1 The optimal parameter l may slightly vary with different lead

times, but such variation within the first 5 days is not considered in

this study.
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HurricaneMaria (Fig. 3a) and TyphoonNoru (Fig. 3b). In both

cases, the location, intensity and structure of the tropical cy-

clone in the original members tend to be more diverse as the

lead time increases. Averaging these original members (i.e.,

the arithmetic mean method) inevitably results in a spurious

smoothing of the structure of the tropical cyclone, causing

suboptimum mean forecasts of the track, intensity and

structure. By contrast, the tropical cyclones in the processed

TABLE 2. As in Table 1, but for individual cases.

Original l 5 64 l 5 128 l 5 192 l 5 256

Global RMSE (hPa) Case 1 2.96 1.87 1.67 1.60 1.57

Case 2 3.06 1.84 1.59 1.56 1.56

Case 3 3.37 2.27 1.93 1.83 1.81

Case 4 3.20 4.47 1.62 1.54 1.51

Case 5 2.91 1.85 1.52 1.45 1.41

Tropical cyclone RMSE (hPa) Case 1 3.14 2.33 1.20 1.0 1.05

Case 2 2.73 2.48 1.27 1.38 1.18

Case 3 2.73 2.09 1.56 1.26 1.23

Case 4 3.03 2.07 1.21 1.17 1.15

Case 5 2.65 1.53 1.13 1.11 1.11

FIG. 2. (a) The 2.5-day SLP forecast of a randomly selected ensemble member (red contours) and the analysis

(black contours) at the same valid time of 1200 UTC 3 Aug 2017 and their displacement vectors (blue arrows).

(b) The aligned field (blue contours) of the forecast in (a) and the analysis (black contours). (c) As in (a), and (d) as

in (b), but for the area of the green box shown in (a) and (b).

1950 WEATHER AND FORECAST ING VOLUME 36

Unauthenticated | Downloaded 05/24/22 03:56 AM UTC



ensemble members of FM method are aligned to the mean of

their positions, avoiding the spurious smoothing caused by

the displacement of the tropical cyclone in individual en-

semble members. The aligned ensemble members greatly

reduce the position-related spread among the original mem-

bers, facilitating an accurate calculation of the mean ampli-

tude of features.

c. Errors in the tropical cyclone track and intensity forecasts

Tropical cyclone track and intensity forecasts are crucial

metrics with respect to the prediction of tropical cyclones.

Figure 4 compares the sample-mean tropical cyclone track

(Fig. 4a) and the minimum SLP (Fig. 4b) errors of the con-

sensus (red), FM (blue), and AM (green) forecasts. The

uncertainty bars show the 95% confidence interval for the

mean error. The three approaches have slight, statistically in-

significant differences in the tropical cyclone track fore-

casts (Fig. 4a).

In terms of the tropical cyclone intensity forecast (Fig. 4b),

the AM method shows a poorer forecast skill than the other

two methods after 2 days. The differences are statistically sig-

nificant beyond 3.5 days; namely, the intensity forecast errors

of the consensus and FM approaches are out of the uncertainty

ranges of the AM forecast errors. The differences between the

consensus and FM intensity forecast errors are statistically in-

significant, although the FM errors are slightly larger (;3 hPa)

than the consensus forecast errors. Themarginally lower errors

of the consensus forecasts could be possibly attributed to the

FIG. 3. (a) SLP of the original and aligned forecast members of HurricaneMaria at the 1-day (solid lines), 2.5-day

(dashed lines), and 5-day (dotted lines) lead times initialized at 0000 UTC 17 Sep 2017. (b) SLP of the original and

aligned forecast members of Typhoon Noru at the 1-day (solid lines), 2.5-day (dashed lines), and 5-day (dotted

lines) lead times initialized at 0000 UTC 1 Aug 2017.

FIG. 4. Sample-mean tropical cyclone (a) track and (b) minimum SLP (MSLP) errors of the consensus (red

curve), feature-orientedmean (FM; blue curve), and arithmetic mean (AM; green curve) forecasts. The uncertainty

bars show the 95% confidence interval for the mean error. The numbers at the bottom show the number of forecast

samples at different lead times.
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averaging offset of the random errors contained in the mini-

mum SLP of individual ensemble forecasts. By contrast, the

tropical cyclone intensity in the FM method is estimated after

the aligned forecasts are averaged and thus may contain more

random errors.

The results in Fig. 4 indicate that the consensus and FM

approaches are comparable in the tropical cyclone track and

intensity forecasts because they similarly extract tropical cy-

clone position and intensity information from individual en-

semble forecasts. The FM method is superior because its

tropical cyclone position and intensity are directly estimated

from the mean forecast field, which is the so-called unified

ensemble mean. However, the consensus approach offers a

scalar mean prediction of the position and intensity of tropical

cyclones that are inconsistent with those of AM. The spurious

smoothing of the displaced tropical cyclone structures by the

AMmethod has little statistical impact on the tropical cyclone

track forecast, but degrades the intensity forecast skill com-

pared with the consensus and FM methods.

d. Inconsistency between consensus and arithmetic
mean forecasts

The consensus method is widely used to predict the mean

track and intensity of tropical cyclones. Its algorithm is es-

sentially different from the direct estimation of the track and

intensity of tropical cyclones based on the AM forecast field.

To quantify the differences between the two approaches, we

provide the sample-mean distance of tropical cyclone centers

(Fig. 5a) and the sample-mean absolute difference (red solid

curve) and bias (blue dashed curve) of the minimum SLP of

tropical cyclones (Fig. 5b) for the AM relative to the consensus

forecasts. Their respective 95% confidence intervals are given

by the uncertainty bars.

Figure 5a shows that the mean distance of the tropical cy-

clone centers between the two methods increases with the lead

time and is statistically significant at all lead times. A similar

variation occurs for the mean absolute difference in the trop-

ical cyclone central SLP (Fig. 5b), reaching nearly 15 hPa at day

5. The mean bias of the AM relative to the consensus forecasts

has a consistent variation compared to their mean absolute

difference (cf. blue and red curves). It indicates that the tra-

ditional AM method systematically underestimates the tropi-

cal cyclone intensity compared with the consensus forecast due

to the smoothing of the displaced tropical cyclone structures in

individual members.

e. Comparing tropical cyclone structures in the arithmetic
mean, feature-oriented mean, and consensus forecasts

Following the comparison of the track and intensity of

tropical cyclones, this section compares the structure of

tropical cyclones in the AM, FM and consensus forecasts.

Figures 6a, 6b, 6e, and 6f show the tropical cyclone track

consensus forecast overlain on the 5-day AM fields of the SLP

(black contours) and the circulation for Hurricane Maria

and Typhoon Noru. The same variables of the unified FM

forecasts are also shown for comparison (Figs. 6c,d,g and h).

Figure 6 shows that the minimum SLP (maximum wind

amplitude) in the AM method is apparently higher (weaker)

than that in the FMmethod as a result of the oversmoothing of

the displaced tropical cyclone vortices in the AM method (see

Fig. 3). This smoothing also results in a poorly resolved eyewall

of the tropical cyclone in the AM method for both Hurricane

Maria and Typhoon Noru. The centers of the tropical cyclone

in the consensus forecast (red dots) deviate from those in the

AM forecast (red crosses) at both the sea surface and

500 hPa in both cases (Figs. 6a,b,e and f) and the distance

FIG. 5. (a) Sample-mean distance of the tropical cyclone centers (red curve) and (b) the sample-mean absolute

difference (red solid curve) and bias (blue dashed curve) of the tropical cyclone MSLP for the arithmetic mean

relative to the consensus forecasts as a function of the lead time. The uncertainty bars show the 95% confidence

interval for the sample-mean values. The absolute difference and bias in Fig. 5b have exactly the same uncertainty

bars. The numbers at the bottom show the number of forecast samples at different lead times.
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FIG. 6. Tropical cyclone track consensus forecast (red lines) overlain on the 5-day arithmetic mean

(AM) fields of (a) the SLP (black contours) and 10-m wind amplitude (shaded) and (b) the 500-hPa wind

vectors (black arrows) and amplitude (shaded) for HurricaneMaria initialized at 0000 UTC 17 Sep 2017.

The red dots and crosses denote the tropical cyclone centers for the 5-day consensus and arithmetic mean

forecasts, respectively. (c),(d) As in (a) and (b), respectively, but for the feature-oriented mean forecast.

The tropical cyclone track forecasts of the feature-oriented mean are shown in purple. (e)–(h) As in (a)–

(d), but for Typhoon Noru initialized at 0000 UTC 1 Aug 2017.

DECEMBER 2021 ZHANG ET AL . 1953

Unauthenticated | Downloaded 05/24/22 03:56 AM UTC



reaches nearly 200 km for Typhoon Noru. This shows the in-

consistency in the information about the position of tropical

cyclones in the AM and consensus forecasts.

By contrast, the track of the tropical cyclones in the FM

(purple line) traverses the location of the minimum wind am-

plitude at the sea surface and 500 hPa in both cases (Figs. 6c,d,g

and h) because the position of the tropical cyclone is derived

directly from the FM forecast field. This confirms the validity of

using the displacement vectors of the SLP ensemble fields for

the alignment of other variables, such as the wind fields at

500 hPa.

The AM is currently the most popular approach to provide

3D spatial field forecasts because it reduces the overall errors

relative to a deterministic forecast (e.g., Buizza et al. 2005;

Yuan et al. 2018). It is therefore of interest to compare the

forecast skill of the AM and the FM in predicting the structure

of tropical cyclones. Figure 7 shows the RMSE of the AM (red

curve) and the FM (blue curve) averaged over a specified

FIG. 7. Sample-meanRMSE of the arithmeticmean (red curve), feature-orientedmean (blue curve), and relocation-basedmean (green

curve) forecasts averaged over a 2000 km3 2000 km square domain in predicting the structures related to tropical cyclones of the (a) SLP,

(b) 10-m winds, and (c) 500-hPa winds. (d)–(f) As in (a)–(c), but for 1000 km 3 1000 km. (g)–(i) As in (a)–(c), but for 600 km 3 600 km.

The square domains in the arithmetic mean, feature-oriented mean, and analysis fields at the same valid time are centered at their own

tropical cyclone centers for verification. The uncertainty bars give the 95% confidence interval for the sample-mean error.
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square domain in predicting the structures of the SLP and the

winds at 10m and 500 hPa related to tropical cyclones. The square

domains of the AM, the FM and the analysis fields at the same

valid time are centered at their own centers of the tropical cyclone

for verification. Different domain sizes are used to demonstrate

the sensitivity of the comparison results, including 2000km 3
2000km, 1000km 3 1000km, and 600km 3 600km.

The results show that the FM only has slightly smaller

RMSE than the AM in predicting the SLP field for all the

domain sizes that are statistically insignificant. By contrast, the

superiority of the FM over the AM is much more remarkable

for the wind field, where it is statistically significant for all

domain sizes and both the surface and upper levels. Reducing

the domain size for verification further expands the advantage

of the FM. This suggests that the improvement of the FM

relative to the AM is mainly in the prediction of the vortex-

related primary circulation. These results imply that AM has

limited skill in predicting extreme events, although it is inten-

ded to minimize forecast errors by filtering out unpredictable

noise. The FM recognizes and eliminates displacements among

features and simply averages their amplitude. The FM there-

fore has the potential to act as a better and more skillful en-

semble mean algorithm for the prediction of extreme events.

In view of the shortcomings of the AMmethod, the tropical

cyclone ensemblemean field can also be derived using a similar

concept to the consensus forecast. Within a predefined domain

size, the structures related to the tropical cyclone in individual

ensemble fields are extracted as a whole and relocated to the

consensus mean of the position of the tropical cyclone. The

relocation-based ensemble mean field is then calculated by

simply averaging the relocated structure within the over-

lapping domain. The relocation-based mean (green curve) is

also compared with the AM and FM in terms of the regional

RMSE as the metric used in Fig. 7. The relocation-based mean

forecast performs much better than the AM and shows slightly

lower regional RMSE than the FM in the wind fields beyond

2.5 days. Nonetheless, a suboptimal assumption for the

relocation-based ensemble mean is all its structures related to

the tropical cyclone, such as the vortex and the outflow envi-

ronment, in a single ensemble field have a homogeneous dis-

placement from their respective mean position. Figure 8 gives

an example to demonstrate the flaw in the relocation-based

mean forecasts of the structure of tropical cyclones. Figure 8

shows the original, relocated and aligned ensemble fields

(Figs. 8a–c) and their corresponding mean fields (Figs. 8d–

f)—that is, the AM, relocation-based mean, and FM forecasts.

The original ensemble fields (Fig. 8a) present remarkable

positional displacements across their members, including the

inner vortex (e.g., the 1000-hPa contour) and the outer large-

scale circulation (e.g., the 1015-hPa contour). By contrast, the

inner vortices in the relocated (Fig. 8b) and aligned (Fig. 8c)

ensemble fields are adjusted to their mean position with a

significant reduction in the positional diversity to below

200 km. However, the outer circulation of the tropical cyclone

(i.e., 1015 hPa) in the relocated ensemble fields still maintains a

considerable positional deviation, especially for the eastern

and northern edges of Hurricane Maria with a positional

range. 400 km (highlighted by the red arrow). By comparison,

the members aligned by the FM only have a positional range

within 200 km. These results suggest that the adjustment of the

outer circulation of the tropical cyclone by the relocation

scheme is less effective than that of the FM scheme based on

the spatial-dependent field alignment technique. As a result,

the mean field of the FM is closer to the reference than the

other two mean fields, especially the more realistic narrow

trough toward the east to the north of Hurricane Maria.

5. Summary and discussion

Ensemble member forecasts of tropical cyclones become

more dispersed in terms of the location, intensity and structure

of the tropical cyclone as the predictability gradually degrades.

The traditional pointwise arithmetic mean method for en-

semble forecasts of tropical cyclones disregards the displace-

ment of the structures related to tropical cyclones in individual

ensemble fields, leading to an unrealistic smoothing of the

features of the tropical cyclone and suboptimal ensemblemean

forecasts of the track and intensity. The consensus approach

has therefore been adopted to give a weighted or unweighted

average of the track and intensity information for tropical cy-

clones in individual forecast members.

The consensus forecast has become a routine approach to

provide guidance forecasts of the track and intensity of tropical

cyclones in operational forecasts. However, ensemble mean

forecasts of the spatial structure of tropical cyclones corre-

sponding to the track and intensity consensus forecasts are

not yet available. This study introduces a unified ensemble

mean for the prediction of tropical cyclones by applying the

feature-oriented mean method. Unlike the simple relocation

procedure, the feature-oriented mean method implements a

spatial-dependent alignment of the structure related to the

tropical cyclone in each ensemble member toward the mean of

their positions before the amplitude is averaged. The track and

intensity forecasts for tropical cyclones can be directly esti-

mated from the feature-oriented mean field.

To evaluate the performance of the feature-oriented mean

method in predicting the track, intensity and structure of

tropical cyclones, we selected 219 forecast samples from 25

tropical cyclones during the summer of 2017.We found that the

track and intensity forecasts for tropical cyclones from the

arithmetic mean and the consensus methods are remarkably

inconsistent. Specifically, the track forecasts of the two ap-

proaches have statistically significant differences in distances

throughout all lead times. The arithmetic mean forecasts sys-

tematically underestimate the intensity of tropical cyclones

relative to the consensus forecast. By contrast, the feature-

oriented mean method provides ensemble mean forecasts of

the track and intensity of tropical cyclones and their corre-

sponding spatial structure.

In terms of the track forecasts for tropical cyclones, the

sample-mean evaluation shows that the arithmetic mean,

consensus, and feature-oriented mean methods do not present

statistically significant differences. The feature-oriented mean

and consensus forecasts have a similar forecast skill for the

intensity of tropical cyclones and both methods perform better

than arithmetic mean beyond 2 days. With respect to the
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forecast of the structure of tropical cyclones, the feature-

oriented mean presents a significantly smaller RMSE than

the arithmetic mean in predicting both the vortex and environ-

mental circulation of tropical cyclones for all lead times. A case

study of Hurricane Maria suggests that the feature-oriented

mean method performs better than the relocation-based en-

semble mean in predicting the environmental circulation of the

tropical cyclone. This is because the relocation procedure does

not account for the displacement of the large-scale environment

of the tropical cyclone, although it moves the tropical cyclone

vortices to the consensus mean position.

With respect to the computational efficiency, the feature-

oriented mean method is easy to implement in a parallel

computing framework because it adjusts each ensemble

forecast independently. The process of each ensemble member

can be submitted to a single central processing unit, which

makes dramatic savings in the cost of computing. The field

alignment step is executed for a global or regional domain, not

simply for tropical cyclones. This means that the feature-

oriented mean method can simultaneously provide ensemble

mean forecasts of multiple variables over the entire model

domain in addition to the activities of tropical cyclone. This

greatly expands the time-efficient application of the feature-

oriented mean method to operational forecasts for different

regions and different weather and climate events.

The results of this study, despite using a limited number of

examples, provide an initial evaluation of the application of the

feature-oriented mean method to ensemble predictions of

FIG. 8. Spaghetti plots (1000 and 1015 hPa) of the 5-day

(a) original, (b) relocated, and (c) aligned ensemble member

forecasts of the SLP for HurricaneMaria valid at 0000 UTC 27 Sep

2017. (d)–(f) Corresponding ensemble mean fields for the arith-

metic mean, relocation-based, and feature-oriented mean

methods. (g) Verified analysis. Black thick contours highlight the

SLP at 1000 and 1015 hPa.
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tropical cyclones. We plan to use more examples of tropical

cyclones to give a more comprehensive assessment of the

feature-oriented mean method in the future. Some consensus

approaches have been developed to optimally select high-skill

tropical cyclone forecast members from single-model or mul-

timodel ensembles to give an unequally weighted average of

forecast members. This idea can also be extended to the ap-

plication of the feature-oriented mean method to further im-

prove the forecast skill for tropical cyclones. It is worth

emphasizing that the superior forecasts of the 3D structure of

tropical cyclones using the feature-oriented mean method

compared with the arithmetic mean and relocation-based

mean methods may have more applications—for example,

improving the prediction of the position and intensity of

tropical cyclone–related wind gusts and heavy precipitation,

which could provide useful guidance for tropical cyclone

forecasters. Convection-scale ensemble forecasting is another

area for the potential application of the feature-oriented

mean method.
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