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Abstract
El Niño and the Southern Oscillation (ENSO) have a worldwide impact on seasonal to yearly climate. However, there are 
decadal variations in the seasonal prediction skill of ENSO in dynamical and statistical models; in particular, ENSO pre-
diction skill has declined since 2000. The shortcomings of models mean that it is very important to study ENSO seasonal 
predictability and its decadal variation using observational/reanalysis data. Here we quantitatively estimate the seasonal 
predictability limit (PL) of ENSO from 1900 to 2015 using Nonlinear local Lyapunov exponent (NLLE) theory with an 
observational/reanalysis dataset and explore its decadal variations. The mean PL of sea surface temperature (SST) is high 
in the central/eastern tropical Pacific and low in the western tropical Pacific, reaching 12–15 and 7–8 months, respectively. 
The PL in the tropical Pacific varies on a decadal timescale, with an interdecadal standard deviation of up to 2 months in 
the central tropical Pacific that has similar spatial structure to the mean PL. Taking the PL of SST in the Niño 3.4 region as 
representative of the PL in the central/eastern tropical Pacific, there are clearly higher values in the 1900s, mid-1930s, mid-
1960s, and mid-1990s, and lower values in the 1920s, mid-1940s, and mid-2010s. Meanwhile, the PL of SST in the Niño 6 
region—whose average value is 7 months—is in good agreement with the PL of most regions in the western tropical Pacific, 
with higher values in the 1910s, 1940s, and 1980s and lower values in the 1930s, 1950s, and mid-1990s. In the framework 
of NLLE theory, the PL is determined by the error growth rate (representing the dissipation rate of the predictable signal) 
and the saturation value of relative error (representing predictable signal intensity). We reveal that the spatial structure of 
the mean PL in the tropical Pacific is determined mainly by the error growth rate. The decadal variability of PL is affected 
more by the variation of the saturation value of relative error in the equatorial Pacific, whereas the error growth rate cannot 
be ignored in the PL of some regions. As an important source of predictability in ENSO dynamics, the relationship between 
warm water volume and SST in the Niño 3.4 region has a critical role in the decadal variability of PL in the tropical Pacific 
through the error growth rate and saturation value of relative error. This strong relationship reduces the error growth rate in 
the initial period and increases the saturated relative error, contributing to the high PL.

1  Introduction

As the strongest seasonal-to-interannual variability in 
the tropical Pacific, El Niño and the Southern Oscillation 
(ENSO) has major impacts on weather and climate in many 
parts of the world via the atmospheric bridge effect (Cai 
et al. 2020; Chen et al. 2004; Duan and Mu 2018; Li et al. 
2019; Timmermann et al. 2018; Yeh et al. 2018; Zhang et al. 
2021). Considerable progress has been made in the under-
standing and prediction of ENSO over the past few decades 
(Chen et al. 2004, 2015; Kirtman 2003; Latif et al. 1998; 
Wang et al. 2017; Xie et al. 2016; Zebiak and Cane 1987). 
Nevertheless, ENSO prediction remains challenging. The 
reliability of forecasts of ENSO events has been reported as 
being relatively lower in the early twenty-first century than 
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in the 1980s and 1990s, even with the ongoing improvement 
of forecast models. Decadal variations in ENSO forecasting 
skill have been identified in several analyses of numerical 
model predictions (Balmaseda et al. 1995; Chen et al. 2004; 
Kumar et al. 2017; Tang et al. 2008). The variation may 
be associated with the deficiencies of the ENSO prediction 
models, but it also depends strongly on ENSO predictability 
itself (Chen and Cane 2008; Duan and Mu 2018; Kirtman 
and Schopf 1998; Tang et al. 2008).

Many previous studies have examined decadal variations in 
ENSO predictability (Duan et al. 2018; Kirtman and Schopf 
1998; Tang et al. 2008; Zhao et al. 2016; Zheng et al. 2016) 
using two common approaches: the diagnostic approach and 
the prognostic approach. The prognostic approach is based 
on hindcast experiments and widely used to explore ENSO 
predictability (Kirtman and Schopf 1998; Latif et al. 1998; 
Tang et al. 2008). The diagnostic approach uses the signal-to-
noise ratio. The variance of a variable is decomposed into a 
signal component—which is potentially predictable—and an 
unpredictable noise component (Lopez and Kirtman 2014). 
Potential predictability at a given scale is analyzed using the 
ratio of the signal variance to the noise variance. However, 
for the signal-to-noise method, determining which part of the 
variance is signal and which part is noise remains somewhat 
subjective. This method can only qualitatively give the rela-
tive size of the predictability, not the predictability limit (PL) 
(Chen et al. 2006). In the prognostic approach, the predict-
ability is estimated from the prediction skill of dynamical 
models and is usually model-dependent (Tang et al. 2008). 
These studies have significantly improved our understanding 
of ENSO predictability. However, forecast models are always 
imperfect analogs of the real ENSO dynamical system, which 
leads to some uncertainties in estimating ENSO predictabil-
ity. Conclusions on ENSO predictability using the prognostic 
approach may give a rather confusing explanation of the dec-
adal variations in ENSO forecast skill (Duan and Mu 2018). 
The predictability of the real ENSO system is concealed in 
the observational/reanalysis dataset. Thus, challenges remain 
in ENSO predictability studies in eliminating the negative 
impact of model deficiencies, deriving robust and general con-
clusions directly from the observational dataset, and quantita-
tively obtaining the PL.

The nonlinear local Lyapunov exponent (NLLE) method 
has been introduced to investigate atmospheric and oceanic 
predictability using observational data (Ding and Li 2007; 
Ding et al. 2008, 2016; Hou et al. 2018a; Li and Wang 2008; 
Li and Ding 2011, 2013, 2015; Li et al. 2018). As a nonlinear 
extension of the traditional Lyapunov exponent concept, the 
NLLE measures the nonlinear growth rate of the initial error 
of a nonlinear dynamical model (Chen et al. 2006). With the 
NLLE and its derivatives, the limit of atmospheric and oceanic 
predictability over various timescales can be determined quan-
titatively by exploring the evolution of the distance between 

initially local dynamical analogs (LDA) from the observational 
time series (Li and Ding 2011). Therefore, the ENSO PL can 
be assessed using the NLLE method with observational/rea-
nalysis data (Hou et al. 2018b). In this paper, we use the NLLE 
method to estimate the seasonal PL of sea surface tempera-
ture (SST) in the tropical Pacific and investigate its decadal 
variation. The different key Niño regions will be considered, 
and the performances of their decadal variations of PL are 
explained from the perspective of error growth dynamics.

This paper is structured as follows: Sect. 2 briefly intro-
duces the NLLE method and describes the data used in this 
study. Section 3 first examines the decadal variation of SST 
predictability in the tropical Pacific from 1900 to 2015, then 
Sect. 3.2 analyzes the error growth represented by the NLLE. 
The possible mechanisms responsible for the decadal vari-
ations in ENSO predictability are discussed in Sect. 3.3. A 
summary and discussion are given in Sect. 4.

2 � Method and data

2.1 � The NLLE method

An n-dimensional nonlinear dynamical system is described by

where F  denotes  the dynamical  system and 
� =

[
x1(t), x2(t),…… , xn(t)

]T is the state vector at the time t. 
The evolution of an error � =

[
�1(t), �2(t),… , �n(t)

]T , super-
imposed on a state x, is given by the equation:

where �(�) is the tangent linear evolutional operator and 
�(�, �) is the high-order nonlinear term. There are some 
difficulties in solving the nonlinear term, so in most pre-
vious studies the initial perturbations were assumed to be 
sufficiently small for their evolution to be approximated by 
the tangent linear model of the nonlinear dynamical sys-
tem (Eckmann and Ruelle 1985; Karamperidou et al. 2014; 
Lorenz 1969). However, the tangent linear approximation 
has many limitations in predictability problems involving 
finite-amplitude initial errors (Ding and Li 2007; Lacarra 
and Talagrand 1988; Li and Ding 2011; Mu and Duan 2003). 
Therefore, the nonlinear behavior of error growth should 
be considered. Without making the linear approximation, 
solutions of Eq. (2) can be obtained by numerical integration 
from t = t0 to ti,

(1)
d

dt
� = �(�),

(2)
d

dt
� = �(�)� +�(�, �),

ti = t0 + �,
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where �
(
�
(
t0
)
, �
(
t0
)
, �
)
 represents the error propagator. The 

definition of the NLLE is:

where λ
(
�
(
t0
)
, �
(
t0
)
, �
)
 is a function of the initial state 

�
(
t0
)
 , the initial error �

(
t0
)
 , and the evolution time incre-

ment � . The NLLE measures the nonlinear growth rate of 
the initial errors of a dynamical model without linearizing 
the model’s governing equations. For a specific class of 
states Ω , the ensemble average NLLE, obtained by averag-
ing λ

(
�(t0), �

(
t0
)
, �
)
,

where ⟨⟩x∈Ω denotes the ensemble average of state sample 
set Ω and x∈Ω represents the geometric mean of the errors 
from state sample set Ω . The ensemble mean NLLE reflects 
the evolution of mean error growth and can represent the 
predictability of the specific set. Based on the definition of 
NLLE, the mean relative growth of the initial error (RGIE, 
lnE ) may be obtained from,

The concept of RGIE can be extended as the mean rela-
tive growth during a specific period. Considering the period 
from �i to �j , the mean relative growth may be written:

According to dynamical systems error growth theory, 
E(�, �, �) will converge to a saturation level with increas-
ing � (Ding and Li 2007). Using the theoretical satura-
tion level, the predictability limit can be quantitatively 
determined (Ding and Li 2007; Li and Ding 2011). The 
RGIE grows with increasing evolution time and reaches the 
saturation error level when the information from the initial 
state is completely lost; this evolution time is regarded as 
the PL. A schematic illustration of the determination of 
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∫
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λ
(
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(
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, �
(
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, �
)
d�

∫
x∈Ω

1d�
= λ(�, �, �)x∈Ω =

1

�
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(
t
i
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�
(
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(6)ln E(�, �, �) =
[
�(Ω, �, �)�

]
= ln

‖‖‖‖
�
(
t�
)‖‖‖‖x∈Ω

‖‖‖‖
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(
t0
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.

(7)

ln E
(
�, �, �i → �j

)
= ln E

(
�, �, �j

)
− ln E

(
�, �, �i

)
= ln

‖‖‖‖‖
�
(
t�j
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‖‖‖‖
�
(
t�i

)‖‖‖‖x∈Ω

the PL using the NLLE method is shown as Fig. 1 in Ding 
et al. (2016).

For dynamical systems, whose governing equations are 
known explicitly, the mean NLLE and RGIE may be calcu-
lated directly by numerical integration of their error evolu-
tion equations (Ding and Li 2007). However, the dynami-
cal equations of the atmosphere and ocean are explicitly 
unknown, but abundant observational/reanalysis data are 
available, so we can estimate the mean NLLE by using these 
data with the local dynamical analog (LDA) method (Hou 
et al. 2020, 2021; Li and Ding 2011). The general purpose 
of the LDA method is to find the analogues for each base 
trajectory from the observational time series based on initial 
and evolved features at two different states (time points) in 
the time series, then estimate the exponential divergence 
rate between the base trajectories and their analogues as the 

NLLE. The mean RGIE can also be calculated. To reduce 
the effect of error fluctuations, the predictability limit in this 
study is defined as the time at which the error reaches 95% 
of its saturation value. The saturation value is obtained by 
taking the average of the mean error growth after the error 
almost stops increasing, following the work of Ding et al. 
(2016). More detailed descriptions and a derivation of the 
NLLE and LDA method can be found in Li and Ding (2011) 
and Ding et al. (2016).

Data in geophysical time series always have a certain per-
sistence and are not completely independent. Thus, the effec-
tive degrees of freedom for the samples must be considered 
when computing statistics (Bretherton et al. 1999). In this 
method, the effective degrees of freedom for significance 
tests with autocorrelations sequences �XX(j) and �YY (j) are 
derived as follows (Li et al. 2013, 2021; Pyper and Peter-
man 1998):

where Neff  is the effective number of degrees of freedom 
used in the significance calculation, N  is the sample size 
(unadjusted number of degrees of freedom), and �XX(j) and 
�YY (j) are the autocorrelations of two sampled time series X 
and Y  at time lag j , respectively.

(8)
1

Neff
≈

1

N
+

2

N

N−2∑

j=1

N − j

N
�XX(j)�YY (j),
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2.2 � Data

The monthly SST dataset used in this study is version 5 of the 
Extended Reconstructed SST (ERSST.v5) generated by the 
National Oceanic and Atmospheric Administration (NOAA) 
on a 2° × 2° spatial grid (Huang et al. 2017), covering the 
period January 1854 to December 2019. The associated 
subsurface ocean temperatures were investigated using the 
Simple Ocean Data Assimilation dataset (SODA; available 
online at http://​www.​atmos.​umd.​edu/​~ocean/). Version 2.2.4 
of the SODA dataset consists of monthly-mean data span-
ning 1871–2008 with 0.5° × 0.5° horizontal resolution. The 
monthly mean ocean temperature data from The National 
Center for Environmental Prediction Global Ocean Data 
Assimilation System from January 1979 to the present are 
also used (GODAS; Behringer 2007). Using the ocean tem-
perature and depth of the 20 °C isotherm (D20) from both 
SODA and GODAS, a warm water volume (WWV) index is 
defined as the average of D20 over the region 5° S–5° N, 120° 
E–80° W (Meinen and McPhaden 2000). The WWV index 
from GODAS and that from SODA are normalized sepa-
rately, and have good consistency in their common periods. 
Therefore, we produced a new WWV index by combining 
that from SODA before 2008 and from GODAS since 2008 
to the present.

Before calculating the PL, the climatological mean annual 
cycle and quadratic trend were first removed from the SST 
data to obtain the sea surface temperature anomaly (SSTA) 
at each grid point. The quadratically detrended process is 
expected to reduce the effects owing to global warming. To 
extract the seasonal to interannual components of the SSTA, 
a 9-year high-pass Gaussian filter is applied. The PL and 
RGIE at each grid point can be determined from the SSTA 
time series by applying the NLLE method. The mean NLLE 
and RGIE are calculated using a (9 × 12 + 1)-month moving 
window from 1900 to 2019. The moving window moves 
forward every month. The time axis indicates the middle 
month of the (9 × 12 + 1) month moving window. The sea-
sonal predictability limit of SSTA for different decades is 
estimated from the mean NLLE. To highlight the decadal 
component, a 9-year high-pass Gaussian filter is applied to 
the monthly PL. We also use other SST datasets (OISST, 
Hadley and Kaplan SST; Kaplan et al. 1998; Rayner et al. 
2003; Reynolds et al. 2007), with different moving windows 
(from 7- to 13-year), and the results are similar.

3 � Results

3.1 � Predictability limit of the tropical Pacific

The spatial distribution of the mean PL of monthly SST from 
1900 to 2015 over the tropical Pacific is shown in Fig. 1a. 
The mean PL over the tropical and subtropical Pacific (110° 
E–70° W, 30° S–30° N) is 6.95 months. Zonally averaged, 
the PL in the equatorial Pacific is higher than that off the 
equator. From east to west along the equatorial Pacific, the 
PL in the central and eastern Pacific (exceeding 12 months) 
is relatively higher than that in the western tropical Pacific 
(5–7 months). The highest PL (> 14 months) is in the region 
east of the equatorial international dateline, and another high 
PL region (> 13 months) occurs in the South Pacific cold 
tongue off the equator (SPT; 5°–15° S, 140° W–100° W). 
Of the different Niño key regions, the PL is the highest in 
the Niño 3.4 region (5°S–5° N, 170°–120° W; > 12 months), 
followed by the Niño 3 region (5° S–5° N, 150°–90° W; 
10–13 months), and then the Niño 1 + 2 region (10° S–0°, 
90°–80° W; 8–9 months); these values are consistent with 
the results of Li and Ding (2013). The spatial structure of 
the PL in the tropical Pacific at seasonal to interannual time 
scales is associated with the ENSO dynamics system. The 
regions related to the ENSO oceanic process have relatively 
high PL, such as the Niño key regions—including Niño 6 
region (8°–16° N, 140°–160° E)—implying the important 
role of the ENSO mechanism in the predictability of SSTA 
through the physical processes described by the delayed 
oscillator and recharge–discharge theory (Jin 1997; Wang 
et al. 1999; Wang 2018; Wyrtki 1985).

Tang et al. (2008) performed ENSO hindcasts from 1881 
to 2000 and highlighted that the prediction skill for differ-
ent dynamical models showed consistent interdecadal vari-
ation; this is the decadal variation of ENSO predictability 
represented by SST from models rather than the real physi-
cal system. In Fig. 2, we display the decadal variation of 
the mean PL from observational/analysis data in several 
key Niño regions and the SPT region. The curves in Fig. 2 
are the seasonal PLs of SST under a (9 × 12 + 1)-month-
low-pass filter and reflect the variation of seasonal predict-
ability in different decades. The mean PL over the period 
from 1900 to 2015 is highest in the SPT (13.2 months) 
and Niño 3.4 (12.0 months) regions, followed by the Niño 
4 (11.4 months) and Niño 3 (11.0 months), Niño 1 + 2 
(8.9 months), and Niño 6 (7.3 months) regions, and lastly 
by the Niño 5 region (6.2 months), which is consistent with 
the values shown in Fig. 1. The PLs in these regions show 
decadal variation. The standard deviation over the period 
from 1900 to 2015 reflects the magnitude of decadal vari-
ation; in the SPT (1.40 months), Niño 3.4 (1.17 months), 
and Niño 4 (1.37 months) regions it is higher than that 

http://www.atmos.umd.edu/~ocean/


1083Investigating decadal variations of the seasonal predictability limit of sea surface…

1 3

in the Niño 3 (0.83 months) and Niño 6 (0.87 months) 
regions. The decadal variation in the Niño 1 + 2 region is 
0.56 months, and the lowest variation occurs in the Niño 5 
region (0.47 months).

The spatial features of decadal variability of the PL are 
shown in terms of the standard deviation on a decadal scale 

of the seasonal PL in each grid cell of the tropical Pacific 
in Fig. 1b. Its spatial distribution is consistent with that of 
Fig. 1a, and there is larger variability in the equatorial region 
than in the off-equator regions. The mean standard deviation 
over the whole tropical Pacific is 1.08 months. The maxi-
mum values (> 2.4 months) are found in the central tropical 

Fig. 1   a Spatial distribution 
of the mean seasonal predict-
ability limit (PL) of SST and 
b its standard deviation on the 
decadal scale over the tropical 
Pacific from January 1900 to 
December 2015

Fig. 2   Decadal variation of the 
seasonal PL in the Niño 1 + 2 
region (10° S–0°, 90°–80° 
W; brown), Niño 3 region (5° 
S–5° N, 150°–90° W; cyan), 
Niño 3.4 region (5° S–5° N, 
170°–120° W; deep-sky-blue), 
Niño 4 region (5°S–5°N, 
160°E–150°W; green), Niño 5 
region (5° S–5° N, 120° E–140° 
E; dark violet), Niño 6 region 
(8°–16° N, 140° E–160° E; deep 
pink), the South Pacific cold 
tongue off the equator (SPT 
region; 5°–15° S, 140°–100° W; 
orange)
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Pacific (5° S–5° N, 170° E–150° W) and the SPT region off 
the equator. The decadal variation of the seasonal PL in the 
central Pacific is larger than that in the eastern and western 
Pacific, consistent with the results in Fig. 2. Relative to the 
subtropical regions and western tropical Pacific regions, the 
PL decadal variability in the Niño 6 region is high, which 
implies the important role of ENSO dynamical processes in 
the PL of SST.

The seasonal PLs in the central and eastern tropical 
Pacific regions share some features of decadal variation. As 
shown in Table 1, the correlation coefficients between the 
PLs in the Niño 1 + 2 region and in the Niño 3, Niño 3.4, 
and Niño 4 regions are 0.84, 0.73, and 0.46, respectively, 
all of which reach the 90% confidence level. The correla-
tion coefficients between Niño 3, Niño 3.4, and Niño 4 are 
all greater than 0.5 and significant at the � = 0.1 level. The 
high correlation coefficients between the PL curves of the 
Niño 1 + 2, 3, 3.4, and 4 regions suggest that the same oce-
anic and atmospheric processes contribute to the PL of SST 
in the central and eastern Pacific. Interestingly, the decadal 
variability of the PL in the western tropical Pacific has rela-
tively low consistency with that in the central and eastern 
Pacific. The PLs of the western Pacific, such as the Niño 
5 and 6 regions, have low correlation with those of other 
Niño regions (Table 1). However, the PLs in the Niño 5 and 
6 regions, whose SSTs are representative of those in the 
western Pacific, have highly consistent decadal variability.

Considering the difference in PL between the western 
and central/eastern Pacific, we choose the Niño 3.4 region 
to represent the central/eastern Pacific and the Niño 6 region 
for the western Pacific. The correlation coefficient between 
the PL in the Niño 3.4 region and PLs over the tropical 
Pacific is shown in Fig. 3a. Dotted regions indicate where 
the correlation coefficients pass the 90% confidence level. As 
mentioned above, the PL of the central and eastern tropical 
Pacific agrees well with the decadal variability of the PL of 
the Niño 3.4 region. However, the PLs of the western tropi-
cal and subtropical Pacific

 have low correlation with the decadal variability of the 
PL of the Niño 3.4 region. Figure 3b shows the correlation 
pattern between the PL of the Niño 6 region and those over 
the tropical Pacific. There is significant correlation in the 
western Pacific, where the PLs have insignificant correlation 
with those of the central/eastern Pacific, such as in the Niño 
3.4 region. Thus, the results of Table 1 and Fig. 3 imply that 
the decadal variation of the PL in the central/eastern tropical 
Pacific is inconsistent with that in the western tropical and 
subtropical Pacific, and the decadal variation of the PLs in 
the Niño 6 and Niño 3.4 regions can be regarded as repre-
sentative of that in the central/eastern, and western tropical 
Pacific, respectively.

In the central/eastern tropical Pacific, the PLs in the Niño 
3.4 region have larger values (> 13 months) in the early 
1900s, mid-1930s, mid-1960s and mid-1990s, along with 
lower values (< 11 months) around the 1920s, mid-1940s 
and mid-2010s, as shown in Fig. 2. Since the mid-1990s, the 
PLs in the Niño 1 + 2, 3, 3.4, and 4 regions have declined, as 
verified by the reduced forecast accuracy in ENSO opera-
tional models (Barnston et al. 2012; Zhao et al. 2016; Zheng 
et al. 2016). In contrast to the decadal variation of the PL 
in the Niño 3.4 region, the larger PLs (> 7.0 months) of 
the Niño 6 region in the western Pacific appear in the mid-
1910s, 1940s, mid-1980s and mid-2010s. The PLs of the 
Niño 6 region are lower (< 7.0 months) in the 1930s, 1950s 
and mid-1990s. Interestingly, the PLs in the Niño 5 and 6 
regions have increased since the mid-1990s. In fact, the 
model forecast skill from the North American Multi-Model 
Ensemble performs better in the western tropical Pacific 
since mid-1990s.

More detail of the decadal variability of the equatorial 
Pacific is shown in the longitude–time evolution of PL in 
the equatorial Pacific (5° S–5° N) in Fig. 4. The average 
PLs for different longitudes show that the seasonal PL is 
larger in the eastern and central tropical Pacific than in the 
western tropical Pacific, and the highest PLs (~ 14 months) 
are found from 180° to 150°W, consistent with Figs. 1 and 
2. In addition to the lowest PL, seen in the western tropical 

Table 1   Correlation coefficients between the decadal variations of 
seasonal PLs in different Niño regions from 1900 to 2015. Niño 1 + 2 
region (10° S–0°, 90°–80° W), Niño 3 region (5° S–5° N, 150°–90° 

W), Niño 3.4 region (5° S–5° N, 170°–120° W), Niño 4 region (5° 
S–5° N, 160° E–150° W), Niño 5 region (5° S–5° N, 120° E–140° E), 
Niño 6 region (8°–16° N, 140° E–160° E)

**  and * denote significant correlations at the 95% and 90% confidence levels, respectively

Niño region 1 + 2 3 3.4 4 5 6

1 + 2 1.00 0.84** 0.73** 0.46* − 0.02 0.04
3 1.00 0.86** 0.51* 0.11 0.25
3.4 1.00 0.85** 0.18 0.34
4 1.00 0.28 0.38
5 1.00 0.74**
6 1.00
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Pacific, there are low PL values (< 8 months) east of 90° W 
from 1900 to 2015, which may be due to the influence of 
offshore current processes. The different values of the PL in 
the western, central, and eastern Pacific mean that the zonal 

gradient of PL in the tropical Pacific changes with longitude. 
Relative to other longitude regions, the zonal gradient of PL 
is larger near 170° E, which is a key area of air–sea coupling 
including wind divergence and the zonal advection of SST 
in ENSO dynamics.

Like the decadal variation described by the PL curves in 
Niño regions shown in Fig. 2, the decadal variability of the PL 
for the whole tropical Pacific in Fig. 4 is more evident in cer-
tain decades. The PLs for almost all of the equatorial Pacific 
are lower in the 1920s and mid-1940s. The high PL areas 
(> 14 months) from 180° W to 150° W also vary on a decadal 
basis and occur mainly in the 1900s, mid-1930s, mid-1960s 
and mid-1990s. The central longitudes of the high PL areas 
also differ with decade; for example, 150° W in the 1900s, 
170° W in the mid-1930s, and 160° W in the mid-1960s and 
mid-1990s. The high PL areas (> 14 months) in the central 
and eastern equatorial Pacific are larger and more sustained 
in the period from the 1980s to 2000s. The decline of the PL 
in the tropical Pacific since the mid-1990s occurs mainly in 
the central and eastern Pacific and corresponds to a reduction 
in the area where PL is greater than 11 months. The reduc-
tion of the high PL toward the central Pacific started in the 
mid-1990s and is ongoing. Meanwhile, the PL in the western 
tropical Pacific has increased since the mid-1990s, and this 
is more obvious near 150° E. The region with PL > 8 months 
has expanded from 140° E to 130° E near the eastern border. 

Fig. 3   Spatial field over the 
tropical Pacific of PL correla-
tion with those over the a Nino 
3.4 and b the Nino 6 regions. 
The dotted region represents 
correlation coefficients exceed-
ing the 90% confidence level

Fig. 4   Hovmöller diagram of the predictability limit zonally averaged 
from 5° S to 5° N in the tropical Pacific. The ordinate is the time from 
1900 to 2015 and the abscissa is the longitude from 110° E to 70° W
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Compared with the low PL period of the 1920s and mid-1940s 
in the tropical Pacific, the PL decline in the central tropical 
Pacific since the 2000s is slightly weaker but has lasted longer.

3.2 � Error growth in the tropical Pacific

From the perspective of error growth dynamics, the PL 
depends on the growth rate of the initial error and the 
error saturation level. The error saturation level represents 
the signal intensity, and the error growth rate determines 
how long the initial error takes to reach an error saturation 
value. Therefore, we focus on the error growth estimates 
from NLLE, such as λ(Ω, �, �) and lnE(�, �, �) , to clarify the 
reasons for the spatial pattern and decadal variation of the 
seasonal PL in the tropical and subtropical Pacific.

Figure 5 shows the mean error growth values as a func-
tion of evolution time, represented by NLLE, RGIE, and the 
errors in the Niño 3.4 and Niño 6 regions from 1900 to 2015. 
The mean PL in the Niño 3.4 region (12.0 months) is larger 
than that in the Niño 6 region (7.3 months). As a measure of 

error growth rate, the NLLE λ(Ω, �, �) = 1

�
ln

‖�(t�)‖x∈Ω
‖�(t0)‖x∈Ω

 and 

represents the logarithmic growth rate of error relative to 
initial error during a period of evolution. As shown in 
Fig. 5a, the NLLE in the Niño 6 region is always larger than 
that in the Niño 3.4 region over evolution periods from 1 to 
10 months, which implies that the initial error grows faster 
in the Niño 6 region than in the Niño 3.4 region. Initial 
information is lost more rapidly with increasing evolution 
time in the Niño 6 region, which corresponds to the low PL. 
The RGIE or lnE=ln ‖�(t�)‖x∈Ω

‖�(t0)‖x∈Ω
 and represents the error size 

relative to an initial error as a function of evolution period. 
The RGIE values in the Niño 3.4 and Niño 6 regions are 
shown in Fig. 5b. The RGIE values increase with increasing 
evolution time and reach the saturation level. The RGIE of 
the Niño 3.4 region is lower than that of the Niño 6 region 
and grows more slowly over the evolution time from 1 to 
10 months. The dashed lines indicate the PL of the Niño 3.4 
and Niño 6 regions, showing the period when the RGIE 
grows to the saturation level (95%). It is interesting that the 
saturation level of RGIE in the Niño 6 region is almost 
equivalent to that in the Niño 3.4 region, although the stand-
ard deviation of SST in the two regions is quite different. As 
well as the relative error described by lnE(�, �, �) , the actual 
error values in both regions also grow with increasing evolu-
tion time and reach saturation levels, as shown in Fig. 5c. 
The error values in the Niño 6 region are always lower but 
grow faster and reach the saturated error level earlier than 
those in the Niño 3.4 region. The actual saturated error level 
is almost proportional to the standard deviation of the system 
(Li et al. 2018). The higher standard deviation and lower 
error growth rate in the Niño 3.4 region contribute to the 
higher PL compared with that in the Niño 6 region. Note, 
however, that high standard deviation of SST does not cor-
respond exactly to high PL.

Figure 6b shows the spatial pattern of the actual saturated 
error level in the tropical Pacific over the period 1900–2015, 
which is very similar to the spatial pattern of the SST stand-
ard deviation. The actual errors at the saturation time are 
high (> 0.7 °C) in the central/eastern equatorial Pacific, 
and low (< 0.4 °C) in the western and subtropical Pacific. 
The initial error (Fig. 6a) ranges from 0.008 to 0.04 °C over 
the whole tropical Pacific, which is reasonable due to the 
constraint of adjacent states in phase space from the NLLE 
theory (Castro et al. 2008; Penland and Sardeshmukh 1995; 
Reynolds and Smith 1994). The initial error presents a simi-
lar spatial pattern to the error saturation level pattern, as 
the SST standard deviation pattern not only determines the 
spatial pattern of the saturated error value but also affects 
the spatial mode of the initial error. However, the differences 
between the spatial pattern of the actual error and that of the 
mean PL are large; for example, the maximum of the error 

Fig. 5   Error growth in the Niño 3.4 (blue) and Niño 6 (pink) regions 
averaged from 1900 to 2015: a NLLE, b mean relative growth of the 
initial error (RGIE, lnE(�, �, �) ), c actual error values (°C)
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is in the equatorial Pacific region near the east coast but that 
of the PL is in the central tropical Pacific. This implies that 
the absolute error does not fully determine the spatial pattern 
of PL values in the tropical Pacific. In fact, the error growth 
rate (NLLE) and RGIE play important roles in the PL.

The RGIE is the key variable describing relative error 
growth and is used to calculate the PL of the dynamical 
system. Figure 6d displays the saturated RGIE values. As 
shown in Eq. (6), the saturated RGIE depends on the satu-
rated and initial errors. The regions corresponding to large 
saturated error values often have large initial errors (Fig. 6a, 
b). Therefore, the distribution of the saturated RGIE will dif-
fer from the spatial pattern of the saturated or initial error. 
The saturated RGIE in the tropical Pacific ranges from 2.76 
to 3.16—which corresponds to 0.93 to 1.08 times the mean 
saturated RGIE value (2.958) in the tropical Pacific—and 
has a horseshoe-shaped distribution: small values appear in 
the equatorial tropical Pacific around the dateline, and in 
the northeast and southeast Pacific near the equator, and are 

surrounded by large saturated RGIE. Note that the spatial 
variation of the saturated RGIE is small (0.93 to 1.08 times 
the mean). A comparison with the spatial distribution of the 
mean PL (Fig. 1a) shows that regions with high saturated 
RGIE values have low PL, which suggests that the spatial 
distribution of saturated RGIE cannot explain the spatial pat-
tern of the PL of SST in the tropical Pacific.

Meanwhile, the RGIE from 0 to 1 month also has a horse-
shoe shape (Fig. 6c), with low values in the central and east-
ern tropical Pacific and high values in the western tropical 
and subtropical Pacific. In contrast to the saturated RGIE 
that represents information signal intensity, the RGIE from 
0 to 1 month is equivalent to the NLLE in the evolutional 
time of 1 month (from �i = 0month to �j = 1month ) and 
represents the error growth over the first month. The values 
of RGIE from 0 to 1 month range from 0.6 to 1.3, suggesting 
the error grows to 1.8 (i.e. e0.6 ) to 3.6 ( e1.3 ) times the initial 
error in 1 month. Thus, the high 0 to 1 month RGIE means 
faster forecast signal loss and low PL. Compared with the 

Fig. 6   Spatial distribution of error growth: a initial error at 
� = 0month ; b error at the saturation time; c RGIE at � = 1month ; 
d RGIE at the saturation time; e NLLE at the evolution time of 

3 months; f NLLE at the evolutional time of 6 months. Values shown 
are multiplied by the mean value of each variable shown in the top 
right corner of the diagram
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spatial range of saturated RGIE (0.93/1.08) in the tropical 
Pacific, the spatial variation of the 0 to 1 month RGIE is 
larger (0.65/1.4), which indicates that the spatial pattern of 
NLLE has a greater impact on the mean PL. Meanwhile, the 
spatial distribution of the 0 to 1 month RGIE is consistent 
with the pattern of mean PL in the tropical Pacific. Figure 6e 
and f display the mean error growth rate or NLLE at 3 and 
6 months over the period 1900–2015. The NLLE for differ-
ent evolution times has low values in the central and east-
ern tropical Pacific and high values in the western tropical 
and subtropical Pacific. A high value for NLLE represents 
fast error growth over the given evolution time, thus corre-
sponding to low PL, whereas low NLLE corresponds to high 
PL. The NLLE at evolution times of 3 (6) months has high 
spatial correlation coefficients with the PL pattern shown 
in Fig. 1a of − 0.77 (− 0.82), both of which reach the 90% 
confidence level. The similar pattern of the NLLE and PL 
implies that the error growth rate is the key factor determin-
ing the spatial pattern of the PL.

The main factor affecting the spatial distribution of PL in 
the tropical Pacific is therefore error growth rate, whereas 
the RGIE at the time of saturation has little influence. The 
PL in different regions shows decadal variation; how does 
the error growth rate and saturated RGIE affect this decadal 
variability? As shown in Fig. 2, the Niño 3.4 and Niño 6 

regions are the key regions where the ENSO dynamical sys-
tems develop, and their decadal variations, to an extent, rep-
resent the PL variation in the central/eastern tropical Pacific 
and the western tropical Pacific, respectively. Therefore, we 
first analyze the decadal variability of error growth of the 
Niño 3.4 and Niño 6 regions.

Figure 7 shows the decadal variation of saturated RGIE 
and error growth rate (NLLE) from 1900 to 2015 in the Niño 
3.4 and Niño 6 regions. The PL, RGIE, and NLLE curves 
are normalized for better clarity. The NLLE, saturated RGIE, 
and error also have obvious decadal variations. The RGIE at 
the saturated time of the Niño 3.4 region (blue–violet curve 
in Fig. 7a) has larger values in the 1900s, mid-1930s, mid-
1960s, and 1980s to 2000s, which is generally consistent 
with the decadal variation of the PL of the Niño 3.4 region. 
In fact, the correlation coefficient between the PL and RGIE 
at the saturated time is 0.81 (passing the 90% confidence 
level), which indicates that the decadal variation of RGIE at 
the time of saturation plays an important role in the PL and 
explains almost 66% of the PL decadal variance of the Niño 
3.4 region. The strong linkage between the decadal variation 
of saturated RGIE and that of the PL of the Niño 3.4 region 
agrees with results from the signal-to-noise method: highly 
saturated RGIE represents large signal intensity and high 
PL. However, the decline of PL around the 2000s appears 

Fig. 7   Decadal variations of 
error growth variables for the a 
Niño 3.4 and b Niño 6 regions. 
The black curve is the PL in 
Niño regions, the blue–violet 
curve is RGIE at the saturation 
time, green represents the error 
relative growth rate (NLLE) 
from 0 to 3 months, and deep-
pink is the NLLE from 0 to 
6 months
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to be an exception: the PL in the Niño 3.4 region started to 
decline from the mid-1990s to mid-2010s, but the saturated 
RGIE value grew consistently from the mid-1990s to mid-
2000s. Therefore, other factors affect the decadal variability 
of the PL. Interestingly, the error growth rate, especially 
NLLE (6) (that is, NLLE over months 0 to 6), increased at 
the beginning of the mid-1990s, which contributes to the 
decline of the PL in the Niño 3.4 region from mid-1990s 
to mid-2010s, whereas the saturated RGIE value increased 
from the 2000s to mid-2000s. Thus, there is decadal varia-
tion in the error growth rate, which also has a large influence 
on the decadal variation of PL. The NLLE over months 0 
to 3 (NLLE (3); forest-green curve in Fig. 7a) represents 
the mean error growth rate relative to an initial error dur-
ing the evolution time of 3 months, and NLLE (6) (deep-
pink curve) represents the growth rate during the evolution 
time of 6 months. Clearly, high NLLE corresponds to low 
PL, such as in the 1920s and 1950s, whereas low NLLE 
corresponds to high PL, such as in the 1990s. The correla-
tion coefficient between the PL and NLLE (3) or NLLE (6) 
is − 0.70 or − 0.63, both of which the 90% confidence level, 
which confirms the important role of the error growth rate 
in the decadal variation of the PL.

Similar to the results for the Niño 3.4 region, the decadal 
variation of the PL of the Niño 6 region is consistent with 
the decadal variability of the RGIE at the time of saturation, 
represented by the black and blue–violet curves in Fig. 7b, 
respectively. The correlation coefficient between the PL and 
saturated RGIE is 0.90 (passing the 95% confidence level), 
which implies that high (low) RGIE at the time of saturation 
always gives a high (low) PL value. In addition, the error 
growth rate (NLLE) has an opposing effect on the PL of 
the Niño 6 region. When NLLE (3) and NLLE (6) are high 
in the 1930s and mid-1950s, the PL is low. The decadal 
variation of PL in the Niño 6 region has a correlation coef-
ficient of − 0.66, with NLLE (3) that passes the 90% con-
fidence level, as the fast error growth rate in the evolution 
time reduces the PL. We also calculate the correlation coef-
ficient between the PL and NLLE (6) in the Niño 6 region. 
The coefficient is − 0.12, which does not pass the 90% con-
fidence level, as a result of the low PL value (~ 5–6 months) 
of the Niño 6 region. When the evolution time for NLLE 
(6) is greater than the PL value, the error growth rate is 
less constrained. Compared with the relationship of the 
PL and RGIE or NLLE of the Niño 3.4 region, the Niño 
6 region shows a stronger correlation between the PL and 

Fig. 8   Hovmöller diagram of 
the saturated RGIE (a), and 
NLLE at the evolution times 
of b 1, c 3, and d 6 months, 
meridionally averaged from 5° 
S to 5° N in the tropical Pacific. 
The ordinate is the time from 
1900 to 2015 and the abscissa 
is the longitude from 110° E to 
70° W
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saturated RGIE, which implies that the decadal variation of 
PL depends more on the change of saturated RGIE of the 
Niño 6 region; this may result from the different physical 
mechanisms and greater atmospheric noise in the western 
tropical Pacific.

A more striking representation of error evolution at dif-
ferent longitudes is given by the Hovmöller diagram of the 
RGIE at the saturation time and NLLE at different evolution 
times in Fig. 8. The NLLE in the western Pacific is higher 
than that in the central and eastern Pacific, which is consist-
ent with the result that PL is high in the central and eastern 
Pacific and low in the western Pacific. The decadal varia-
tion of saturated RGIE and NLLE in the central and eastern 
Pacific differs from that in the western tropical Pacific. There 
are high values of saturated RGIE (Fig. 8a) in the 1900s, 
mid-1930s, and 1970s to 2000s for the central and eastern 
tropical Pacific and in the 1910s, mid-1930s, 1960s, 1990s, 
and mid-2010s for the western tropical Pacific, consistent 
with the decadal variability of PL. As shown in Fig. 8b, c, 
and d, the NLLE patterns for these evolution times have sim-
ilar decadal variation. The NLLE of the central and eastern 
tropical Pacific is higher in the mid-1940s, which contributes 
to the lower PL. In the last decade, NLLE (6) has increased 
at 165° W since the mid-1990s, which is consistent with the 
decadal decline of PL of the Niño 3.4 region.

In terms of NLLE theory, the decadal variation of satu-
rated RGIE and NLLE determines that of the PL, as shown 
in Figs. 7 and 8. To illustrate the role of NLLE and saturated 
RGIE on the PL at different longitudes over the equatorial 
Pacific, we calculate the correlation coefficient between 
saturated RGIE or NLLE at different evolution times and 
the PL at different longitudes in Fig. 9 (solid dots indicate 
coefficients that pass the 90% confidence level). The correla-
tion coefficients between PL and saturated RGIE at different 
longitudes are always positive and pass the 90% confidence 
level, which indicates that the decadal variations of the PL 
are closely tied to the variation of saturated RGIE. The dec-
adal variability of saturated RGIE can explain 60% of the 
decadal variation of PL in the equatorial Pacific. Compared 

with the relationship between saturated RGIE and PL, the 
influence of NLLE on the PL is more variable, varying 
with evolution time and longitude. The correlation coef-
ficients between NLLE and PL are significantly negative 
in the regions from 170° E to 125° W, which implies that 
high error growth rates lead to low values of the PL in the 
central and eastern tropical Pacific. In regions west of 165° 
E and east of 120° W, the relationship between NLLE and 
PL is not significant, which may result from the role of sto-
chastic physical processes such as atmospheric convection 
on SST in the region west of 165° E or offshore currents 
in the region east of 120° W. Interestingly, the PL in the 
regions west of 150° E has a significant positive correlation 
with NLLE (6), which contradicts the idea that larger error 
growth rate decreases the PL. In fact, the region west of 150° 
E has low PL (lower than 6 months). Therefore, NLLE (6), 
representing the error growth rate at the evolution time of 
6 months, has some features in common with the variation 
of the saturated RGIE. Comparing the effect of the decadal 
variation of saturated RGIE and NLLE on PL, we find that 
the decadal variation of the PL of SST in the tropical Pacific 
is caused by the change in saturated RGIE, while the error 
growth rate may affect some longitudinal regions.

3.3 � Physical processes responsible for the decadal 
variation of the predictability limit

In the previous subsection, we analyzed the influence of 
error growth on the PL based on the NLLE theory. However, 
it is not clear which physical processes affect the character-
istics of error growth. As the primary source of seasonal-
to-yearly climate variability in the tropical Pacific, ENSO 
events can be predicted up to three seasons in advance owing 
to the slow equatorial heat content recharge/discharge in the 
upper ocean (Cane and Zebiak 1985; Wang et al. 2017) that 
arises from the disequilibrium between zonal winds and 
WWV. The WWV, describing upper Pacific Ocean heat 
content, usually leads the ENSO SST evolution by a quarter 
of the ENSO period and acts as a useful predictor for ENSO 

Fig. 9   Correlation coefficients 
between the decadal variation 
of error growth rate (NLLE) 
or RGIE (saturated) and PL 
meridionally averaged from 5° 
S to 5° N in the tropical Pacific 
during the period 1900 to 2015. 
Solid dots indicate the correla-
tion passes the 90% confidence 
level. The abscissa is the longi-
tude from 110° E to 70° W
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SST (McPhaden 2003). Therefore, WWV is an important 
predictability source for the SST field in the tropical Pacific. 
However, this phase-lag relationship between the WWV and 
ENSO SST varies on decadal timescales (Bunge and Clarke 
2014); for example, the significant shift around 2000 when 
the lead time shortened from approximately two to three 
seasons to approximately one season (Bosc and Delcroix 
2008; Neske and McGregor 2018; Neske et al. 2021). It 
seems plausible to link the variation of WWV–ENSO SST 
lead time and the decadal variability of SST predictability 
in the tropical Pacific because the upper ocean heat content 
provides the ocean memory for the long-lead predictability 
of SST in the tropical Pacific. From the viewpoint of NLLE 
theory, the RGIE at the time of saturation and the error 
growth rate determine the PL of SST. Thus, we will explore 
how the RGIE (saturated) and error growth rate (NLLE) are 
affected by the phase-lag relationship between the WWV 
and SST in the tropical Pacific. We focus here on the Niño 
3.4 region, which is an important component of the ENSO 
dynamical system.

Figure 10a shows the phase-lag relationships between the 
WWV and the Niño 3.4 index from 1900 to 2015 within a 
(9 × 12 + 1)-month running window. We find pronounced 
decadal variability, which is consistent with the results of 
Zheng (2019). The correlation coefficients between WWV 

and the Niño 3.4 index are low during the period 1940–1960 
at lead times of 0 to 6 months. The phase-lag relationship 
has weakened at lead times of 6–9 months since the 2000s. 
Considering that the predictability barrier of ENSO is in 
spring (March to May, the spring predictability barrier; 
SPB) and ENSO’s mature phase occurs in winter (Decem-
ber–February), there are between 7 (May–December) to 12 
(March–February) months from spring to winter. There-
fore, we calculate the mean correlation between the WWV 
index and Niño 3.4 at lead times of 7 to 12 months as Corr 
(WWV-Niño, 7–12) (red curve in Fig. 10b) to quantitatively 
characterize the relationship between WWV and the Niño 
3.4 index and explore its effect on error growth and the PL. 
Corr (WWV-Niño, 7–12) represents the predictability infor-
mation that WWV contributes to the Niño 3.4 index. When 
Corr (WWV-Niño, 7–12) is high, WWV can be regarded 
as a skillful predictor of the Niño 3.4 index, increasing 
the predictability limit of SST in the tropical Pacific. Con-
sistent with the decadal variation shown in Fig. 10a, Corr 
(WWV-Niño, 7–12) (red curve in Fig. 10b) is high from the 
mid-1980s to 2000s, which corresponds to high PL (black 
curve in Fig. 7a), and is low from the 1940s to 1960s with 
low PL. Corr (WWV-Niño, 7–12) declines from the start 
of the twenty-first century with the decrease of PL in the 
Niño 3.4 region. The correlation coefficient between Corr 

Fig. 10   a Correlation between 
the warm water volume (WWV) 
and Niño 3.4 index as a function 
of WWV lead month (vertical) 
and time (horizontal), within 
a (9 × 12 + 1)-month run-
ning window. The time shown 
is the middle month of each 
(9 × 12 + 1)-month window. 
A 9-year running average is 
applied to the correlation to 
reduce small fluctuations. b 
Average correlation between 
the WWV and Niño 3.4 at lead 
times of 7 to 12 months. The 
blue represents that at least half 
of the correlation coefficients 
used for averaging have passed 
the significant level of α = 0.1
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(WWV-Niño, 7–12) and PL is 0.69 (exceeding the 90% 
confidence level), which supports the important role of the 
phase-lag relationships between the WWV and the Niño 3.4 
index in the decadal variability of PL.

From the perspective of error growth, the variation of the 
phase-lag relationships between WWV and Niño 3.4 index 
has an impact on the saturated RGIE and error growth rate. 
The decadal variation of Corr (WWV-Niño, 7–12) is consist-
ent with the saturated RGIE. In periods with strong phase-lag 
relationships between WWV and Niño such as in the 1900s, 
1930s, 1970s, and 1990s, saturated RGIE is larger, which 
promotes high PL. Saturated RGIE is relatively low when 
Corr (WWV-Niño, 7–12) is lower, such as in the 1920s and 
1950s. In fact, the correlation between Corr (WWV-Niño, 
7–12) and saturated RGIE (blue–violet curve in Fig. 7a) is 
0.44, which also passes the 90% confidence level under the 
effective degrees of freedom described in Sect. 2.1. Mean-
while, NLLE at lead times of 1, 3, and 6 months is more 
rapid when Corr (WWV-Niño, 7–12) is low, such as dur-
ing the 1920s and 1950s. When Corr (WWV-Niño, 7–12) 
is high, NLLE is lower and the predictability limit is larger, 
such as from the 1980s to 2000s, because with high cor-
relation, WWV can provide more information to predict 
SST and reduce the error growth rate. Further confirma-
tion is provided by the correlation between Corr (WWV-
Niño, 7–12) and NLLE (3) (coefficient is − 0.60), and the 
correlation between Corr (WWV-Niño, 7–12) and NLLE 
(6) is − 0.55, both of which pass the 90% confidence level.

Based on the correlation between WWV and SST in the 
Niño 3.4 region, we calculate the composite results of NLLE, 
saturated RGIE, and error for composites of high (> 0.3) and 
low (< 0.3) correlation. For early lead times (< 5 months), 
the error growth rate (NLLE) is lower where the correla-
tion between WWV and Niño is higher. In particular, the 
NLLE difference between the high and low correlation 
periods reaches 0.1 at a lead time of 1 month, meaning that 
the error growth rate of SST in the low correlation period 
is 1.10 ( e0.1 ) times that in the high correlation period. At 
lead times of 1–5 months, the error growth rate contributes 
to the difference of RGIE between high and low correlation 
periods (Fig. 11b). The value of RGIE in the low correla-
tion period is greater than that in the high correlation period, 
which reduces the PL. However, the high RGIE in the low 
period decreases with increasing lead time. Unlike the RGIE 
for early lead times, the saturated RGIE of the high correla-
tion period is higher than that of the low correlation period 
(Fig. 12b), which shows the high predictability signal in the 
high correlation period. Thus, the slow growth of RGIE in 
early lead times and the high value of RGIE at the saturated 
time together contribute to the high PL in the high correla-
tion period and low PL in the low correlation period. The 
composite error as a function of lead time in the high and low 
correlation periods is also shown in Fig. 11c. The faster error 

growth rate at early lead times gives a larger error in the low 
correlation period than in the high correlation period. With 
increasing lead time, the error in the low correlation period 
is always larger, which corresponds to low PL.

The relationship between WWV and the Niño 3.4 index 
not only affects the PL in the Niño 3.4 region, but also plays 
an important role in the PL of SST in other regions of the 
tropical Pacific. Figure 12 displays the spatial field of the dif-
ference of the PL, saturated RGIE and NLLE at different evo-
lution times between the high and low correlation periods. 
Compared to the PL pattern in low correlation periods, the 
PL of SST in high correlation periods is larger over almost 
the entire tropical Pacific except the tropical Pacific warm 
pool. The maximum difference of PL reaches 3 months near 
the dateline and 165°W in the equatorial Pacific (Fig. 12a). 
The saturated RGIE in the high correlation period has larger 
values than in the low correlation period over almost all of 
the tropical Pacific (Fig. 12b), which indicates that stronger 

Fig. 11   Composited error growth lines based on the correlation coef-
ficient between the Niño 3.4 index and WWV index. The brown lines 
represent the low correlation period and deep-sky-blue lines the high 
correlation period
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forecast signal contributes to the high PL. In addition to the 
maximum difference of saturated RGIE at the dateline in the 
equatorial Pacific being similar to the difference pattern of 
the PL, the saturated RGIE also has an extreme center in the 
northeast Pacific where the difference of PL is small. The 
NLLE represents error growth rate, whose pattern changes 
with evolution time. The NLLE at a lead time of 1 month 
(Fig. 12c) is smaller in the equatorial Pacific but larger in 
the northeast Pacific in the high correlation period than in 
the low correlation period. The difference pattern of NLLE 
for an evolution time of 3 months (Fig. 12d) is similar to the 
pattern of NLLE at an evolution time of 1 month. The larger 
NLLE in the high correlation period in the northeast Pacific 
reduces the effect of increasing PL caused by the increase 
of saturated RGIE, so that the PL of the northeast Pacific 
increases less during the high correlation period. Unlike the 
difference pattern of NLLE between the high and low cor-
relation periods at evolution times of 1 and 3 months, the 
NLLE (6) in the equatorial west Pacific is larger in the high 

correlation period than in the low correlation period, leading 
to a low PL in the west Pacific warm pool.

4 � Conclusions and discussion

In this paper, we have investigated the mean PL of SST and 
its decadal variation in the tropical Pacific from 1900 to 
2015 using observational SST data. The average PL in the 
tropical Pacific from 1900 to 2015 is high in the central and 
eastern Pacific (over 13 months) and is lower than 7 months 
in the western tropical Pacific. There are decadal varia-
tions in the PL in the tropical Pacific that can be as large 
as 2 months as measured by the standard deviation of the 
PL. These decadal variations differ between the western and 
central/eastern Pacific, as shown by the time series of PL in 
the different key Niño regions: the decadal variation is larger 
in the Niño 3.4 region than in the Niño 6 region. The Niño 
3.4 region, representative of the central/eastern Pacific, has 
high PL in the 1900s, mid-1930s, mid-1960s, and mid-1990s 

Fig. 12   Composite differences between high and low correlation periods of the a predictability limit, b RGIE ( lnE ) at the saturated time, and 
NLLE at lead times of c 1 month, d 3 months, and e 6 months. The dotted region passes the 90% confidence level
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and low PL in the 1920s, mid-1940s, and mid-2010s. The PL 
of the western tropical Pacific can be represented by the PL 
of the Niño 6 region and is higher in the mid-1910s, 1940s, 
1980s, and mid-2010s and lower in the 1930s, 1950s, and 
mid-1990s. The decadal variations of PL in the central and 
eastern tropical Pacific are consistent and are well repre-
sented by those in the Niño 3.4 region; they differ from those 
in the western tropical Pacific, represented by the Niño 6 
region. The difference between the decadal variability of PL 
in the central/eastern tropical Pacific and that in the western 
tropical Pacific is more obvious in the Hovmöller diagram of 
PL. The lower PL in the western Pacific is probably ascribed 
to the local air-sea interaction. There is also a low PL in 
the eastern tropical Pacific near the coast, which may result 
from the influence of offshore currents. The whole equatorial 
Pacific also shows more obvious decadal variation.

With the NLLE method, the PL is determined by the error 
growth rate and saturated RGIE. Thus, we investigated their 
spatial pattern and decadal variability in the framework of 
error growth dynamics. We found that the main factor affect-
ing the spatial distribution of mean PL in the tropical Pacific 
is error growth rate (NLLE) when the RGIE at the saturated 
time has little influence. Regions with low error growth rate 
have higher PL, and vice versa. Note that the spatial pat-
tern of actual error is clearly different from that of the mean 
PL, which suggests that the traditional method of estimat-
ing PL by a constant mean square error is inappropriate. 
The different PLs in the western Pacific and central/eastern 
Pacific may result from the different atmospheric and oce-
anic dynamical processes. The oceanic processes are slow, 
which favors the longer PL in the central/eastern Pacific. 
SST in the western Pacific is affected by atmospheric activ-
ity, which introduces more atmospheric noise to SST and 
reduces the PL of SST.

To investigate the decadal variation of PL, we chose the 
average of the Niño 3.4 region to represent the central/east-
ern Pacific and that of the Niño 6 region as the western 
tropical Pacific and analyzed their decadal variation of satu-
rated RGIE and error growth rate (NLLE). The RGIE at the 
saturated time of the Niño 3.4 region has larger values in the 
1900s, mid-1930s, mid-1960s, and 1980s to 2000s, which is 
overall consistent with the decadal variation of the PL of the 
Niño 3.4 region. The high correlation coefficients show that 
the decadal variation of saturated RGIE plays an important 
role in the PL and explains almost 66% of the PL decadal 
variance of Niño 3.4 region. In addition, there is decadal 
variation of the error growth rate, which also has a big influ-
ence on the decadal variation of PL. In particular, the NLLE 
at the evolution time of 6 months has increased since the 
mid-1990s, which contributes to the decline of the PL in 
the Niño 3.4 region from the mid-1990s. Compared with the 
relationship between the PL and RGIE or NLLE of the Niño 
3.4 region, there is stronger correlation between the PL and 

saturated RGIE in the Niño 6 region, which implies that the 
decadal variation of PL is more dependent on the change of 
saturated RGIE in the Niño 6 region. This may result from 
the different physical mechanisms and greater atmospheric 
noise in the western tropical Pacific. Comparing the roles 
of the decadal variation of saturated RGIE and NLLE in the 
PL, we find that the decadal variation of the PL of SST in 
the tropical Pacific is due to the change of saturated RGIE, 
whereas the error growth rate may have an effect in some 
longitudinal regions of the equatorial Pacific.

The SST on a seasonal scale in the tropical Pacific 
is affected by the ocean heat capacity, for example, as 
described by the ENSO recharge–discharge theory. Further 
analyses indicate that the interdecadal variation in predict-
ability is closely related to the interdecadal variation of the 
relationship between WWV and SST. From the perspective 
of error growth, the variation of the phase-lag relationships 
between WWV and Niño has an impact on the saturated 
RGIE and error growth rate. In the period with high phase-
lag relationships between WWV and Niño, saturated RGIE 
is larger and NLLE is lower for lead times of 3 and 6 months, 
which favors high PL, such as in the 1900s, 1930s, 1970s, 
and 1990s. When the correlation between WWV and SST is 
lower, the saturated RGIE is relatively low and NLLE at lead 
times of 3 and 6 months is higher, such as in the 1920s and 
1950s. A possible explanation is that the high correlation 
between WWV and Niño suggests a greater contribution of 
the slowly varying oceanic signal to the evolution of SST, 
leading to a longer cycle and stronger intensity of ENSO, 
which corresponds to high RGIE at the saturated time and 
increases the PL. The PL behavior in the western Pacific is 
not well explained by the WWV-SST relationship because of 
active atmospheric convection. In this paper, we display the 
decadal variability of seasonal PL in the tropical/subtropi-
cal PL over the period from 1900 to 2015 based on obser-
vation/analysis data, which increases our understanding of 
ENSO. The current climate model has some shortcomings in 
the simulation of SST, thus the performance of the climate 
model needs to be evaluated in the predictability, which is 
helpful to improve the capacity of the model.
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