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Abstract
Quantification of the uncertainties in initial analyses against the real atmo-
sphere (“reality”) provides a fundamental reference for the evaluation and devel-
opment of operational data assimilation (DA) systems. Due to the unknown real-
ity, most existing methods for analysis error estimation use reanalysis datasets
or observations as a proxy for reality, which are empirical, non-objective, and
biased. Unlike these methods, our study adopted a modified Statistical Anal-
ysis and Forecast Error (SAFE) estimation method to objectively and directly
quantify spatiotemporal errors in analyses compared to reality based on unbi-
ased assumptions. In the present study, the SAFE method was first applied
to estimate the annual variation and spatial distribution of analysis errors in
the Global Forecast System of Global/Regional Assimilation and PrEdiction
System (GRAPES_GFS) at the China Meteorological Administration (CMA)
since the beginning of its operational implementation (i.e., 2016–2021). Quali-
tative comparison to analysis error estimations in previous studies showed that
SAFE can provide more reasonable spatial-mean analysis error profiles than
can the estimation with the ERA-5 reanalysis as a reference (the approach
hereafter called “ERAv”). Moreover, ERAv overestimates (underestimates) the
spatial-mean analysis error below (above) approximately 500 hPa compared to
SAFE because it neglects the uncertainties inherent in reanalysis. Overall, the
SAFE estimation reveals that relative reductions of about 12.5%, 29%, and 24.5%
were achieved for the spatial-mean analysis errors of wind, temperature, and
geopotential height, respectively, in the GRAPES_GFS throughout the six-year
study period. These results can largely be attributed to the DA scheme being
upgraded from 3D-Var to 4D-Var. SAFE can also provide more reasonable and
accurate pointwise analysis errors than ERAv can.
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1 INTRODUCTION

The goal of data assimilation (DA) is to produce an opti-
mally estimated state of the real atmosphere that can then
be used as the initial condition (or analysis) of Numer-
ical Weather Prediction (NWP) models (Daley, 1991;
Evensen, 1994; Kalnay, 2003; Tang et al., 2016). Owing to
the strong sensitivity of the chaotic atmospheric model
to initial conditions, the key to improving NWP skill is
reducing the errors in the initial analyses (i.e., the dif-
ferences from the real atmospheric state or “reality”;
Lorenz, 1963; Mu et al., 2002; Ding and Li, 2007). Accurate
quantitative estimation of the spatiotemporal variations
in analysis errors is key for evaluating and improving DA
and forecasting performance at operational meteorological
centers.

After nearly 10 years of development, the Global
Forecast System of the Global/Regional Assimilation
and PrEdiction System for global medium-range NWP
(GRAPES_GFS) at the China Meteorological Administra-
tion (CMA) began operation using the 3D Variational
(3D-Var) DA scheme in June 2016 (Wang et al., 2017;
Zhang et al., 2019). In the years since its deployment,
major upgrades have been made to the DA and predic-
tion system, for example, the operational implementation
of the 4D Variational (4D-Var) scheme in July 2018 (Zhang
et al., 2019) that considers the observational time more
accurately, modifications to the model physics, and the
assimilation of additional satellite observations like those
from the FengYun series (Yang et al., 2017; Yin et al., 2020;
Yin et al., 2021; see more details in Table 1 below). Conse-
quently, it is crucial to quantitatively evaluate the annual
variation and spatial distribution of analysis uncertainties
in the GRAPES_GFS DA system with such updates. These
assessments can provide objective reference for major
updates in the DA and prediction systems.

Up to this point, the accuracy of the GRAPES_GFS
DA system’s analysis has usually been estimated by ver-
ifying its output against the ERA-5 reanalysis (Hersbach
and Dee, 2016) produced at the European Centre for
Medium-Range Weather Forecasts (ECMWF; e.g., Zhang
et al., 2019; Wang et al., 2021). This approach is also often
used to verify analyses in many other operational DA
systems (e.g., Langland et al., 2008; Swanson and Roeb-
ber, 2008). Although the reference reanalysis (or analysis)
dataset is generally selected from a separate operational
center, the codependence between the verified analyses
and their reference data cannot be avoided because most
of the assimilated observations in the two systems are
identical (Peña and Toth, 2014; Feng et al., 2017). In addi-
tion, the uncertainties in the reference analysis, despite
being neglected for verification purposes, are comparable
in magnitude to those in the verified analysis. If the errors

in the verified analyses and references are independent,
such verification will significantly overestimate the analy-
sis errors.

There are similar limitations in verifying analyses
against observations (e.g., Decker et al., 2012; Bao and
Zhang, 2013; Wang et al., 2013) as there are in verifying
them against analyses in separate systems; in other words,
the errors in the reference observations are not considered.
Moreover, observational data are sparsely distributed,
resulting in incomplete verification of variables within
the model space. In addition to the two approaches men-
tioned above, ensemble-based DA (e.g., using an ensemble
Kalman filter) provides a natural framework for the quan-
tification of initial uncertainties (e.g., Houtekamer and
Mitchell, 1998; Whitaker and Hamill, 2002). The uncer-
tainties in the analyses can be estimated by calculating the
ensemble spread of the updated initial members (or poste-
riors; e.g., Buizza et al., 2005; Hopson, 2014; Liu et al., 2022)
or analyses at multiple centers (e.g., Park et al., 2008;
Wei et al., 2010). However, multiple tunable parameters
are involved in ensemble-based DA systems, for example,
the localization (e.g., Lorenc, 2003) and inflation (e.g.,
Anderson and Anderson, 1999) factors for the background
error covariance, which can often lead to biased estima-
tions of analysis errors. The ensemble-based DA is also
computationally expensive since a huge number of obser-
vations need to be assimilated for individual members of
the high-dimensional atmospheric system.

Peña and Toth (2014; PT14) proposed a Statistical
Analysis and Forecast Error (SAFE) estimation method
that can provide unbiased, objective, and time-efficient
estimation of analysis and forecast error variances rel-
ative to the real atmosphere in the model space. The
SAFE method estimates the analysis error variance by
solving an inverse equation regarding the fitting between
the modeled perceived error variance and the actual per-
ceived error variance (i.e., forecast minus analysis). Feng
et al. (2017) introduced an additional constraint into
SAFE to minimize its sensitivity to sampling errors, facil-
itating the extended application of SAFE to spatial (or
grid-point) estimation of analysis error variances. Feng
et al. (2017) further demonstrated the effectiveness of
SAFE in quantifying grid-point analysis error variance in
an observing simulation system experiment (OSSE) based
on a quasi-baroclinic model. However, SAFE has not yet
been applied to the spatiotemporal estimation of analysis
errors in operational NWP systems.

This study will apply the modified SAFE method to
quantify the annual variation and spatial distribution of
analysis errors for the GRAPES_GFS DA system at CMA.
The accuracy of the SAFE estimation will be evaluated and
examined by comparing it to traditional verification meth-
ods against radiosonde observations and ERA-5 reanalysis.
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T A B L E 1 Relative changes (%) in the spatial-mean analysis errors for UV, T, and GH at 250, 500, and 850 hPa in the NH and SH
estimated by SAFE for successive years

Parameter pressure Domain 2017 2018 2019 2020 2021

UV 250 hPa NH −2% −10%* −14%* 7%* 3%

0% −7%* −9%* 3% −2%

500 hPa

5% −9%* −8%* 0% −2%

850 hPa SH 9%* −18%* −4% −6% 1%

3% −10%* −3% 1% 3%

6% −6% −1% −2% −2%

T 250 hPa NH 1% −23%* −5% −6% 9%*

0% −16%* −10%* −3% 2%

500 hPa

5% −21%* −3% 5% 1%

850 hPa SH −5% −32%* 27%* −37%* 6%

−4% −23%* 0% −9%* 1%

18%* −24%* −20%* 3% −9%*

GH 250 hPa NH 1% −20%* −15%* 2% 10%*

4% −15%* −9%* −3% 5%

500 hPa 2% −15%* −7%* −9%* 3%

SH −4% −28%* 12%* −23%* 23%*

850 hPa 5% −22%* 3% −21%* 9%*

3% −13%* −3% −16%* −1%

Note: “2017,” “2018,” “2019,” “2020,” and “2021” denote the relative changes for 2016, 2017, 2018, 2019, and 2020, respectively. For example, the relative change
for “2017” is calculated by (e2017 – e2016)/e2016, where e2017 and e2016 denote the analysis RMSEs for 2017 and 2016, respectively. The asterisk indicates
statistically significant differences at the 0.05 level.

Section 2 briefly introduces the SAFE method and the data
used in this study. The results are presented in Section 3
in detail, mainly focused on the annual variation of the
spatial-mean analysis errors and the spatial distribution
of the analysis errors. Section 4 provides a discussion and
conclusions.

2 METHODOLOGY AND DATA

2.1 SAFE method

This section briefly introduces the SAFE method; more
details can be found in PT14 and Feng et al. (2017). Let us
denote f2

i as the perceived error variance between the fore-
cast Fi at lead time i and the analysis A at the same valid
time:

f 2
i = |Fi −A|2, (1)

where | ⋅ | denotes the L2 norm. Considering the errors
in Fi and A from the real atmosphere, that is, xi and x0,
respectively, f 2

i can be converted to:

f 2
i = |xi − x0|

2 = x2
i + x2

0 − 2 ⋅ 𝜌i ⋅ xi ⋅ x0, (2)

where x2
i and x2

0 are the error variances of xi and x0 at
the same valid time, respectively, and 𝜌i is the correla-
tion between xi and x0 at the same valid time. SAFE
is generally used to estimate the temporal-mean (e.g.,
one season for global NWP models) error variance for a
region or a single grid point, so x2

i and x2
0 designate the

temporal-mean error variances, and 𝜌i is their correlation
in time.

PT14 introduces two basic assumptions to reduce the
number of unknown variables on the right-hand side of
Equation (2). One is that the sample-mean true error vari-
ance grows exponentially in the short range (e.g., 2.5 days
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4 FENG et al.

for global NWP models), expressed as:

x2
i = x2

0 ⋅ e𝛼⋅i⋅Δt
, (3)

whereΔt is the DA cycle (six hours for typical global NWP
models). The other assumption is that 𝜌i decays exponen-
tially, that is:

𝜌i = 𝜌i
1, (4)

where 𝜌1 is the error correlation at lead time 1 (gener-
ally six hours). Equation (4) indicates that the true fore-
cast error xi and true analysis error x0 at the same valid
time gradually decorrelate with the forecast lead time
(see more discussion in PT14). Feng et al. (2020) exam-
ined the appropriateness of these two assumptions in an
OSSE environment of the operational Global Forecast Sys-
tem at the National Centers for Environmental Prediction
(NCEP). Given the two basic assumptions (Equations (3)
and (4)), the modeled perceived error variance f 2′

i can be
written as:

f 2′
i = x2

0 ⋅ e𝛼⋅i⋅Δt + x2
0 − 2 ⋅ 𝜌i

1 ⋅ x2
0 ⋅

√
e𝛼⋅i⋅Δt

. (5)

PT14 constructs a cost function J regarding the fitting of
the modeled (f 2′

i ) and actual (f 2
i ) perceived error variances

and solves the three unknown variables (i.e., x2
0, 𝛼, and 𝜌1)

by minimizing J:

J = max
(
|
|
|
f 2′
i − f 2

i
|
|
|
⋅ wi

)

, (6)

where max(⋅) denotes the L-infinite norm, and wi is the
weight on |

|
|
f 2′
i –f 2

i
|
|
|

which decreases with larger variabilities

of ||
|
f 2′
i − f 2

i
|
|
|

at longer lead times (see PT14 for more details
on the calculation of wi).

To lessen the iterative sensitivity to sampling errors
when solving the minimization, Feng et al. (2017) intro-
duced an additional constraint into the cost function:

J = max
(
|
|
|
f 2′
i − f 2

i
|
|
|
⋅ wi

)

(i = 0, 1, … ,n)

+max
(
|
|
|
f 2′
i,𝑗 − f 2

i,𝑗
|
|
|
⋅ wi,𝑗

)

(i = 0, 1, … ,m), (7)

where f 2
i,𝑗 is the error variance between the lagged fore-

casts at i and j lead times at the same valid time, and wi,𝑗 is
the weight on |

|
|
f 2′
i,𝑗 − f 2

i,𝑗
|
|
|
, calculated in a manner similar to

that for wi. f 2′
i,𝑗 is simulated by a simple exponential growth

formula:

f 2′
i,𝑗 = y2

0 ⋅ e𝛼⋅i⋅Δt
. (8)

Note that the fitting of f 2
i,𝑗 (Equation 8) involves only

two parameters (y2
0 and 𝛼) following a simple monotonous

relationship and thus is much less sensitive to sampling
errors than the fitting of f 2

i is (Equation 5). More impor-
tantly, Equation (8) has a common error growth rate
𝛼 as the true forecast error variance in the model-
ing of f 2

i (see Equations 3 and 5), which significantly
decreases the degrees of freedom of the estimated vari-
ables and constrains the convergence space of the cost
function.

2.2 Data

This study uses the 0.25◦ × 0.25◦ real-time forecast data
of the operational GRAPES_GFS global model at CMA in
the winter season (December 1 to the following Febru-
ary 28) from 2016 to 2021. The boreal winter was selected
because it is the season in which the baroclinic instabil-
ity at the synoptic scale dominates and frequently influ-
ences the weather and climate in the mid-latitudes of the
northern hemisphere (Molteni et al., 1990; Molteni and
Palmer, 1993), causing extreme events like cold snaps,
freezing temperatures, and blizzards. Many previous stud-
ies have also used the boreal winter to evaluate the per-
formance of operational assimilation and NWP (e.g., Sim-
mons and Hollingsworth, 2002; Whitaker et al., 2008). The
initial times of the forecast samples and lead times are both
at 12-hr intervals in this study, which means j= i+ 2, and
i and j vary by 2 in Equation (7). The perceived error vari-
ance used in the SAFE estimation is the difference between
the GRAPES_GFS forecasts from the corresponding initial
analysis at the same valid time. The sample-mean (over the
winter season of each year) true forecast error variance is
assumed to grow linearly within the first 2.5 days, which
means n= 10 and m= 8 for Equation (7).

To demonstrate the validity of SAFE, its results
are quantitatively compared to those of traditional
approaches. One traditional approach is assessing the
quality of initial analyses by verifying them against the
operational global radiosonde observations within the
corresponding assimilation window (this approach is
hereafter called “OBSv”). The radiosonde observations
(see the distribution in Figure 1) have relatively high
accuracy and dense horizontal and vertical distribution
over the land and thus are often used as the verifica-
tion reference for analysis and forecast (e.g., Whitaker
et al., 2008; Wang et al., 2013). The other approach to esti-
mate the analysis error of the GRAPES_GFS is verifying
it against the ERA-5 reanalysis (Hersbach and Dee, 2016)
with a 0.25◦ × 0.25◦ resolution (the approach is hereafter
called “ERAv”). The use of ERAv allows for a comparison
of grid-point error estimations with SAFE for different
regions and multiple variables.
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FENG et al. 5

F I G U R E 1 Distribution of
radiosonde observations assimilated in
the GRAPES_GFS data assimilation
system

Distribution of Radiosonde Observations

The verification variables include the typical model
variables of temperature (T), wind (UV), and geopoten-
tial height (GH) at multiple levels from 1,000 hPa to
200 hPa. The UV error variance is calculated by averag-
ing the error variances of the zonal and meridional wind
components. Because the lagged forecast difference con-
straint term (Equation 7) relies on the assumption that the
short-range forecast error growth of the model-to-model
and model-to-reality comparisons are consistent (i.e., both
are 𝛼), SAFE is most suitable for regions with negligible
model deficiencies at short lead times. Our study there-
fore only estimates the spatiotemporal error variance in
the mid-latitudes (30◦–70◦) of the northern and south-
ern hemispheres (NH and SH) where systematic model
errors are generally negligible (PT14; Li et al., 2018). These
regions with major synoptic-scale variabilities are also the
most crucial for verifying the model performance.

3 RESULTS

3.1 Spatial-mean analysis error for the
winter of 2021

The results of the SAFE analysis error estimation are first
shown for the spatial mean in the most recent winter
considered (2021). Figure 2 displays the temporal evo-
lution of the perceived (black) and estimated true (red)
error variances at 500 hPa for UV, T, and GH within the
first 2.5 days. It is noticeable that the modeled (or simu-
lated) perceived error variance (black solid lines) has a very
good fit with the actual (or measured) values (hollow cir-
cles). The modeled perceived error variances are within
the 95% confidence interval (black bars) throughout all
lead times for all variables in the NH and SH, suggest-
ing the feasibility of the SAFE approach in simulating the

evolution of perceived error variances (Equation 5). The
estimated true error variances (red solid lines) are derived
by fitting the perceived error variance. It is worth noting
that the estimated true error variance presents deviations
from the perceived error variance and is especially large
from 0 to 0.5 days, indicating the importance of consid-
ering analysis errors for the verification of short-range
forecasts. The relative deviations between the true and
perceived error variances become smaller as the forecast
errors expand for longer lead times (cf. red and black
solid lines).

Figure 3 shows the vertical profiles (black solid lines)
of the sample-mean root-mean-square error (RMSE) of the
UV, T, and GH analyses over the NH and SH for 2021
estimated by the SAFE method. The analysis error pro-
files of UV are similar for the NH and SH (Figure 3a,d),
which show a maximum at about 300 hPa. This may be
related to the fast error growth (see Figure 4) induced
by the strong baroclinic instability associated with the
upper-level jet stream (Holton and Hakim, 2012). The
RMSE of the UV analysis gradually decreases from 300 hPa
to both the lower and upper levels and reaches its min-
imum near the surface. The analysis error profile of the
GH displays a pattern that is generally similar to that
of UV, except with a slight increase in the RMSE from
300 hPa to 200 hPa. In contrast, the T analysis manifests
a rather distinct error profile. The analysis error of T in
the NH is minimal in the mid-troposphere (∼500 hPa) and
gradually increases above and below that level. Unlike
in the UV analysis, the RMSE of T in the NH reaches
its maximum near the surface (∼1,000 hPa), possibly due
to the complexity of the lower atmosphere as a result
of land use, topography, and surface heat-flux transport
in the boundary layer (Wolyn and McKee, 1989; Shafran
et al., 2000; Cheng and Steenburgh, 2005). Compared to the
NH, the T analysis error in the SH shows much less vertical
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6 FENG et al.

Actl per error var

Est per error var
Est true error var

F I G U R E 2 Temporal evolution of the actual (hollow black circle) and modeled (black line) perceived error variances and the
SAFE-estimated true forecast error variance (red line) for the 500-hPa (a) UV, (b) T, and (c) GH in the NH for the winter of 2021. (d–f) The
same as (a–c) but for the SH. The black bars represent the 95% confidence interval

variability and a much lower magnitude near the surface,
possibly due to the much weaker orographic effect.

To demonstrate the validity of the SAFE method,
its estimated analysis error profiles (dark green solid
lines) are compared to those of the OBSv (dark green
dashed lines) in the same observation space. Note that
the SH 30◦–70◦ region only contains approximately 4%
of the global radiosonde observations, while the same
region in the NH contains approximately 65% of the
global radiosonde observations; the analysis error esti-
mation of the OBSv is thus only shown for two analysis
variables – UV and T – in the NH (i.e., Figure 3a,b). The
radiosonde observations, as typical conventional obser-
vations, have been assimilated into the daily analysis in
almost all the operational DA systems worldwide like
they have been in the GRAPES_GFS; thus, the com-
parison against the radiosonde observations does not
independently verify the analysis of the GRAPES_GFS.
Figure 3a,b show that the analysis error profiles estimated
by SAFE are very close in the model and in the observa-
tion space (cf. black and dark green solid lines) due to the
dense coverage of the radiosonde observations over the
NH land. The OBSv estimations present relatively small
differences from those of SAFE for UV (∼0.4 m⋅s−1) and T
(∼0.3 K) above 500 hPa, but they have much larger anal-
ysis errors below 500 hPa, especially near the surface. As

observational errors are neglected for the OBSv and
contain larger representativeness errors at lower levels
due to the more complex topographic effects, most of the
OBSv verifications overestimate the analysis errors com-
pared to SAFE, especially at lower levels. Nevertheless,
the SAFE and OBSv approaches present qualitatively sim-
ilar vertical patterns of analysis errors for UV and T in the
NH; for example, the maximum (minimum) analysis error
exists at nearly 300 (500) hPa for UV (T), suggesting that
the analysis error estimation made by SAFE was reason-
able. In addition, the estimated analysis RMSEs of UV, T,
and GH also display vertical profiles that are qualitatively
similar to those measured in the OSSE framework (e.g.,
Figure 5d in Privé et al., 2013; Figure 1a,d in Privé and
Errico, 2013; Figure 6 in Wang et al., 2008).

One critical parameter estimated by SAFE is the expo-
nential growth rate (𝛼) of short-range true forecast errors.
Figure 4 shows the growth rate of the true forecast RMSEs
per six hours for UV, T, and GH in the NH and SH for
2021, as estimated by SAFE. It is noteworthy that the
300-hPa UV and GH both present local maxima of error
growth (Figure 4a,c,d,f) associated with the upper-level jet
stream in the mid-latitudes of the NH and SH (Holton
and Hakim, 2012), leading to large analysis errors (see
Figure 3). The UV in both hemispheres and the GH in the
SH exhibit additional local maxima of error growth near
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FENG et al. 7

m·s–1)

m·s–1)

F I G U R E 3 Vertical profiles of the estimated analysis RMSE for (a) UV, (b) T, and (c) GH in the NH for the winter of 2021 by the SAFE
method. (d–f) The same as (a–c), but for the SH. The analysis error estimation by SAFE (dark green solid lines) and the verification analysis
against the radiosonde observations (i.e., the OBSv; dark green dashed lines) are also shown for UV (a) and T (b) in the observation space of
the NH

925 hPa; however, their analysis errors are much lower
than at 300 hPa (see Figure 3), probably due to the more
accurate and denser observations available for the DA at
lower levels of the atmosphere. In comparison, T shows a
maximum error growth rate at approximately 500 hPa and
a much slower error growth rate near the surface. Inter-
estingly, the error growth rates of UV and T are overall
below 1.08 per six hours – much lower than that of GH,
which ranges from 1.1 to 1.13. This is qualitatively consis-
tent with the results evaluated in an OSSE context by Feng
et al. (2020); see their Table 2).

Another parameter estimated by SAFE is 𝜌1, which
indicates the extent to which the six-hour first guess

(FG) error is adjusted by the ingestion of observations.
Generally, more observations assimilated or more effec-
tive assimilation of observations would result in a lower
value of 𝜌1, that is, a lower correlation between the FG and
analysis errors. The results shown in Figure 5 are qual-
itatively similar for all the variables, indicating that the
value of 𝜌1 gradually decreases from the upper to lower
levels. This is because the observations available for assim-
ilation become more abundant and more accurate from
the upper to lower levels and thus exert more remarkable
effects on modifying the FG errors during the assimilation,
leading to a lower correlation between the FG and analysis
errors.
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8 FENG et al.

F I G U R E 4 Same as Figure 3 but for the growth rate of the true forecast RMSE per six hours

T A B L E 2 Comparison of the spatial-mean analysis error estimation (“Regional est”) and spatial mean of the grid-point analysis error
estimation (“Mean of grid est”) by SAFE for UV and T at 500 and 850 hPa, and their relative differences

Regional Est Mean of Grid Est Relative difference

NH; SH NH; SH NH; SH

UV (m s−1) 500 hPa 2.46; 2.44 2.21; 2.21 10%; 9.4%

850 hPa 1.74; 1.66 1.61; 1.60 7.5%; 3.6%

T (K) 500 hPa 0.71; 0.76 0.67; 0.70 5.6%; 7.9%

850 hPa 1.06; 1.02 0.97; 0.92 8.5%; 9.8%
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FENG et al. 9

F I G U R E 5 Same as Figure 4, but for the correlation 𝜌1 between the first guess (six hours) and the analysis errors

3.2 Annual variation of the
spatial-mean analysis error

As one of the two major purposes of this study, the
annual variation of the vertical profiles of the spatial-mean
analysis error is estimated by SAFE for 2016–2021 (solid
lines) in Figure 6. The patterns of the analysis error pro-
files are overall consistent through the years for indi-
vidual variables. The analysis RMSEs clearly tend to
decrease with time for all the variables at different lev-
els, especially before and after 2017 (see more discussion
on Figure 8).

To examine the validity of the SAFE estimation, the
yearly variations of the analysis errors (solid lines) esti-
mated using the ERAv are also displayed for comparison

(Figure 7). The SAFE analysis error estimation for 2020
is also given in Figure 7 (dashed orange lines). The anal-
ysis error profiles of the ERAv display patterns that are
qualitatively similar to those from SAFE (cf. solid and
dashed orange lines); for example, the maximum (mini-
mum) analysis error of UV (T) exists at nearly 300 (500)
hPa in the NH (Figure 7a,b). An unreasonable result for
the ERAv, however, is the UV analysis error at 500 hPa
being very close to or even larger than (e.g., 2017 and
2019) that at 300 hPa in the NH (Figure 7a). For the GH in
the NH, the analysis RMSEs of ERAv at 300 and 500 hPa
are also very close for most years. These results are in
distinct contrast to those from the OBSv (see Figure 3
and also Lei et al., 2018), other studies using the OSSE
(e.g., Wang et al., 2008; Privé et al., 2013; Privé and
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10 FENG et al.

m·s–1)

m·s–1)

F I G U R E 6 Same as Figure 3, but for the annual SAFE estimation from 2016 to 2021

Errico, 2013), and the SAFE estimation (Figure 6a,c), all
of which consistently show dramatically lower analysis
errors at 500 hPa than at 300 hPa for the UV and GH
values in the NH. The unreasonable estimation of UV
and GH for the ERAv may be attributed to the codepen-
dence between the analysis errors of the GRAPES_GFS
and ERA-5.

A remarkable difference in the estimated analysis error
profile by SAFE and ERAv is that the former has lower
analysis errors overall below 500 hPa but larger analysis
errors above 500 hPa for all variables except for the GH
in the NH (cf. dashed and solid orange lines in Figure 7).
The larger analysis error estimation for ERAv at mid and

low levels may be because of more random components
in the low-level analysis errors that originated from a
variety of aspects, for example, the noise ingested by the
assimilation of more low-level observations (e.g., Hunt
et al., 2007; Stewart et al., 2013) and the approximations
used in representing topographic and boundary-layer
effects (e.g., Wolyn and McKee, 1989; Cheng and Steen-
burgh, 2005). In this case, the errors in the GRAPES_GFS
analysis and the ERA-5 reanalysis are nearly indepen-
dent (or orthogonal), resulting in the overestimation of
analysis errors by the ERAv relative to SAFE. In con-
trast, upper-level variable fields are dominated by more
slowly varying synoptic scales and have fewer observations
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FENG et al. 11

RMSE (m·s–1)

RMSE (m·s–1)

F I G U R E 7 Same as Figure 6 but for the analysis errors estimated by ERAv (solid lines). The SAFE-estimated analysis errors for 2020
(dashed lines) are also given for reference

to assimilate than lower levels do, rendering more
codependent analysis errors between the GRAPES_GFS
analysis and the ERA-5 reanalyses. The ERAv may
thus underestimate analysis errors relative to the SAFE
estimation.

Figure 8 further shows the annual variation in the
analysis RMSEs at three levels (250, 500, and 850 hPa)
for the SAFE (solid lines) and ERAv (dashed lines) esti-
mations. The annual variations in the estimated analy-
sis errors by SAFE present qualitatively similar declining
trends with time as those by ERAv but manifest systematic
differences (as discussed in Figure 7). Specifically, for the
SAFE estimations, the overall analysis errors show slight

changes from 2016 to 2017 (4% on average in Table 1), most
of which are statistically insignificant at the 0.05 level, and
then a remarkable reduction (17% on average) in 2018 that
is statistically significant at the 0.05 level for almost all
the variables, especially at 250 hPa, by nearly 22% on aver-
age. Relative reductions of approximately 10%, 23%, and
19% of the analysis RMSEs (Table 1) can be achieved for
UV, T, and GH, respectively, from 2017 to 2018. This can
be attributed to the major upgrade of the GRAPES_GFS
DA system from 3D-Var to 4D-Var in Aug 2018 (Zhang
et al., 2019).

There is another decrease in the analysis error from
2018 to 2019, although it is less dramatic than that
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12 FENG et al.

250hPa_ERAv
500hPa_ERAv
850hPa_ERAv

250hPa_SAFE
500hPa_SAFE
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F I G U R E 8 Annual variation in the spatial-mean analysis errors for (a) UV, (b) T, and (c) GH at 250, 500, and 850 hPa in the NH
estimated by SAFE (solid lines) and ERAv (dashed lines). (d–f) The same as (a–c) but for the SH

from 2017 to 2018, mainly for the variables in the NH
(about 9% on average). This could primarily be related
to the application of a modified planetary boundary-layer
(PBL) scheme on the Charney–Phillips (CP) grid in the
GRAPES_GFS model and a new cloud scheme imple-
mented on the CP grid (CLOUD_CP; see more details in
Chen et al., 2020). The improvement could also be par-
tially attributed to the assimilation of additional observa-
tions into the operational system, including the Geosta-
tionary Interferometric Infrared Sounder (GIIRS) observa-
tions from the FengYun-4A satellite and the Microwave
Humidity Sounder-2 (MWHS-2) radiances onboard the
FengYun-3D satellite. From 2019 to 2020, the variables
only present a slight change in the analysis errors in the
NH but show a statistically significant reduction for T and
GH in the SH by about 18%, possibly due to the addi-
tional assimilation of satellite observations such as the
Hyperspectral Infrared Atmospheric Sounder (HIRAS),
the Microwave Radiation Imager-I (MWRI-I) onboard
the FengYun-3D satellite, and some other satellite obser-
vations. From 2020 to 2021, most variables remained
unchanged or even showed a slight increase. Overall, the
analysis RMSE reached a relative reduction of about 12.5%,
29%, and 24.5% for UV, T, and GH, respectively, during the
six years.

3.3 Grid-point estimation of analysis
errors for the winter of 2021

In addition to estimating the spatial-mean analysis error,
SAFE can also provide a grid-point estimation of analysis
errors. Figure 9 shows the spatial distribution of anal-
ysis errors estimated by SAFE and ERAv for 500-hPa
analysis variables UV and T in the NH and SH for the
winter of 2021 (shading). The 500-hPa GH (green con-
tour) averaged over the winter of 2021 is also shown for
reference. Theoretically, the spatial-mean analysis error
estimation by SAFE (i.e., by fitting the spatial-mean per-
ceived error variances; see Sections 3.1 and 3.2) should
be consistent with the spatial-mean grid-point analysis
error estimation (i.e., by fitting the grid-point perceived
error variances) within the same region. Table 2 shows a
comparison of the spatial-mean analysis error estimation
and the spatial-mean grid-point analysis error estimation
based on SAFE for the winter of 2021. These two esti-
mations show overall small differences ranging from 3.6%
to 10% for variables UV and T at 500 and 850 hPa. Since
the spatial-mean analysis error estimation by SAFE (i.e.,
the results in Sections 3.1 and 3.2) is much less influ-
enced by sampling errors than the grid-point estimation is,
the magnitude of the grid-point analysis errors by SAFE
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FENG et al. 13

F I G U R E 9 Comparison of the grid-point analysis errors (shading, units: m⋅s−1) estimated by (a) SAFE and (b) ERAv for UV at
500 hPa. (c,d) The same as (a,b), but for T (units: K) at 500 hPa. Green contours indicate the winter mean 500-hPa GH in 2021 (units: gpm)

for each hemisphere in Figures 9 and 10 is rescaled by
the spatial-mean analysis error estimations for each hemi-
sphere without changing the spatial pattern.

In Figure 9, the analysis error estimated by ERAv has
a similar spatial pattern to that of the SAFE estimation
for both the 500-hPa UV and T. However, ERAv displays
a general overestimation bias relative to the SAFE esti-
mation for both UV (2.69 vs 2.46 m⋅s−1 for NH, 2.82 vs
2.44 m⋅s−1 for SH) and T (0.74 vs 0.71 K for NH, 0.88 vs
0.76 K for SH), as suggested by Figures 7 and 8. For the
SAFE estimation of the UV wind (Figure 9a), the max-
imum analysis errors (4–5 m⋅s−1) mainly occurred over
North Africa at about approximately 30◦ N, which may be
related to the sparse distribution of mid-level observing
networks in the area (e.g., fewer radiosonde observations,
as shown in Figure 1). The downstream regions extend-
ing from north of the Arabian Peninsula to Pakistan
also exhibit a band of high analysis errors (3–3.5 m⋅s−1),
possibly influenced by the low upstream analysis
quality.

The south to southeast of the Tibetan Plateau (TP) also
presents large analysis errors, which may be related to the

complex effects of topography, such as intense wind shear,
large friction, and representativeness errors. The large
analysis errors around the Caspian Sea (2.7–3.1 m⋅s−1)
may be attributed to the baroclinic instability ahead of
the trough near Eastern Europe (see the green contour
in Figure 9a). Other regions with large analysis errors
(∼3 m⋅s−1) include the North Atlantic Ocean and the
North Pacific Ocean in the “storm track” regions of the
maximum variance of GH (e.g., Wallace et al., 1988).
Western North America also presents large analysis
errors (2.7–3.0 m⋅s−1), possibly due to the strong dynamic
instability of the atmospheric river moisture (Wilson
et al., 2022). In contrast, the regions with large analysis
errors (∼3 m⋅s−1) in the SH are concentrated over the
Indian and Atlantic Oceans within 30◦–60◦ S, which may
be associated with the sparse distribution of available
observations there.

The 500-hPa T (Figure 9c) has an overall similar distri-
bution of estimated analysis errors as the 500-hPa UV does,
except the southern TP presents the largest analysis error
of nearly 1.5 K near 30◦ N. This may be related to the com-
plex thermodynamics influenced by the steep temperature
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14 FENG et al.

F I G U R E 10 Same as Figure 9, but for UV and T at 850 hPa

and moisture gradient at the lateral boundary of the TP.
Noticeably, for both UV and T, the overestimated analysis
error of the ERAv relative to that from SAFE is particularly
dramatic over the oceans extending from the mid-latitudes
to the tropics (not shown). This could be attributed to the
large systematic bias over the oceans between the global
models of the GRAPES_GFS and ERA-5 for the ERAv
algorithm.

Figure 10 is similar to Figure 9 but for the 850-hPa level.
Despite being much more influenced by the topography
compared to 500 hPa, the analysis errors of the 850-hPa
UV estimated by SAFE share similarities with those of
the 500-hPa UV (cf. Figures 9 and 10). These similarities
include the larger analysis errors in North Africa and to
the north of the Arabian Peninsula (possibly associated
with relatively sparse observations), the region around
the Caspian Sea associated with baroclinic instability in
front of the trough, the North Atlantic and Pacific Oceans
in the storm track regions, northwestern North America
being influenced by the atmospheric river, and the South
Atlantic and Indian Oceans. The ERAv estimation can
capture the major centers of the large analysis errors of

UV indicated by SAFE but presents a general overestima-
tion relative to the results of SAFE for both the NH and
SH; this is similar to the results for 500 hPa. The overes-
timation bias of the ERAv is particularly remarkable for
UV over the SH land at 850 hPa (cf. Figure 10a,b), for
example, southern Africa, southern South America, and
Australia, leading to unreasonably larger analysis errors
over the land than over the ocean. This is possibly due to
the differences between the models used for producing the
GRAPES-GFS analysis and the ERA-5 reanalysis in deal-
ing with the topography-related effects and processes in
the planetary boundary layer.

The analysis error estimation of the 850-hPa T by SAFE
has a roughly similar distribution to that of the 850-hPa UV
except for the maximum analysis errors near Baffin Island
to the southwest of Greenland Island (∼3 K). In contrast to
the ERAv result for the 850-hPa UV (Figure 10b), the ERAv
estimation for the 850-hPa T (Figure 10d) has prominent
analysis errors over the oceans to the west of the continents
near 20◦ N and 20◦ S, which is probably related to the large
systematic differences between the two forecast models. In
contrast, SAFE is not affected by systematic errors in the
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FENG et al. 15

F I G U R E 11 Comparison of grid-point forecast error estimates at Day 1 by (a) SAFE and (b) perceived errors for UV at 500 hPa
(shading, units: m⋅s−1). (c,d) The same as (a,b), but for T at 500 hPa (shading, units: K). Green contours indicate the winter mean 500-hPa GH
in 2021 (units: gpm). RMSEs over the NH and SH are given in the title of each panel

forecast models and manifests much lower analysis errors
than the ERAv estimation does over these oceanic regions.

SAFE can also estimate short-range true forecast errors
(i.e., the forecast compared to reality), which are assumed
to be the result of exponential growth of analysis errors
(i.e., x2

0 ⋅ e𝛼⋅i⋅Δt). True forecast errors become closer to
the perceived errors beyond an initial short period dur-
ing which the analysis error cannot be neglected (see
Figure 2). For example, the spatial-mean forecast errors
from SAFE and the perceived errors are nearly consis-
tent at Day 1 for the 500-hPa UV and T, in contrast
to their big differences at initialization (see Figure 2).
Therefore, we further compared the spatial distribution
of the estimated true forecast errors by SAFE and the
perceived errors at Day 1 for the UV and T at 500 hPa
(Figure 11) and 850 hPa (Figure 12). This can offer an indi-
rect assessment of the accuracy of the SAFE analysis error
estimation.

Figure 11 shows that the estimated Day 1 true fore-
cast errors by SAFE present spatial patterns that are overall
similar to the estimated analysis errors for both UV (cf.

Figures 8a and 11a) and T (cf. Figures 9c and 11c). This
indicates that the uncertainties in the short-range back-
ground forecasts are a critical factor affecting the analysis
uncertainties in the DA. Noticeably, the SAFE estimation
and the perceived error display very similar spatial distri-
butions of the Day 1 forecast errors with close spatial-mean
RMSEs (less than 6% difference) and high spatial corre-
lations for UV (0.78 for the NH and 0.88 for the SH) and
T (0.64 for NH and 0.86 for SH). This indirectly confirms
SAFE’s reasonable estimation of the grid-point analysis
errors.

Figure 12 presents the same information as in Figure 11
but for 850 hPa. The spatial-mean RMSEs of the true
forecast errors for the SAFE estimation and the perceived
errors at Day 1 are still close for 850-hPa UV, like the
variables at 500 hPa (see Figure 11), but show slightly
larger (∼10%) relative differences for T. The spatial cor-
relations between the SAFE estimation and the perceived
errors at 850 hPa are similar to those at 500 hPa: 0.84
(NH) and 0.82 (SH) for UV, and 0.63 (NH) and 0.82
(SH) for T. The lower correlation for T over the NH can
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16 FENG et al.

F I G U R E 12 Same as Figure 11, but for UV and T at 850 hPa

possibly be attributed to the large forecast error differences
between the two approaches in some regions, for example,
to the southwest of Greenland Island where the SAFE esti-
mation is almost twice that of the perceived errors (cf.
Figure 12c,d). Such differences may be because the per-
ceived errors are calculated using forecasts and analyses
produced with the same model. SAFE, however, measures
the differences between the model trajectory and the real
atmosphere, which are generally more influenced by the
model deficiencies associated with complex topography,
boundary-layer parameterizations, unresolved scales, and
so forth. Overall, the similarities of the Day 1 forecast
errors derived from the perceived errors and the SAFE esti-
mation offer indirect evidence of the validity of SAFE in
estimating analysis errors.

4 DISCUSSION AND
CONCLUSIONS

Accurate spatiotemporal estimation of analysis errors (i.e.,
the analysis compared to reality) is particularly crucial to
the objective evaluation and upgrading of the performance
of operational DA and prediction systems. This study
applied a modified SAFE estimation algorithm to quantify

the annual variation and spatial distribution of the analy-
sis errors in the operational GRAPES_GFS system at CMA
for the winter seasons from 2016 to 2021. Unlike tradi-
tional approaches that compare analyses against reference
data with errors (e.g., reanalysis at separate operational
centers and the observations), SAFE quantifies error vari-
ances in analyses relative to the real atmosphere by solving
an inverse problem based on unbiased assumptions. This
is the first time the modified SAFE has been applied to
estimate the spatiotemporal variation of analysis errors in
practical operational DA systems.

The spatial-mean error estimation shows that SAFE
offers a statistically reliable simulation of the tempo-
ral evolution of perceived error variances. The estimated
true forecast error variances display remarkable deviations
from the perceived error variances at short ranges, indi-
cating the importance of considering the analysis uncer-
tainties for the verification of short-range forecasts. The
estimated analysis error profiles by SAFE present similar
patterns through the years, that is, the maximum analysis
error being at nearly 300 hPa and the minimum being near
the surface for UV and GH, while the maximum is near the
surface and the minimum is at approximately 500 hPa for
T. The SAFE estimations of the analysis error profiles are
qualitatively similar to those deduced by other methods
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FENG et al. 17

such as verification against the observations, OSSE, and
ensemble spread.

Despite similar profiles of the estimated analysis errors
through the years, the magnitude of the analysis errors
estimated by SAFE present a clear decreasing trend from
2016 to 2021, with relative reductions of approximately
12.5%, 28%, and 24.5% on average for UV, T, and GH,
respectively. The most significant improvement in the
analysis accuracy can be seen from 2017 to 2018 as a result
of an upgrade to the operational DA scheme from 3D-Var
to 4D-Var. The other less significant improvement from
2018 to 2020 can probably be attributed to improvements
in the PBL and cloud microphysics schemes and the assim-
ilation of additional satellite observations, such as those
onboard the FengYun series satellites. The ERAv estimates
created by verifying the GRAPES_GFS analysis against the
ERA-5 reanalysis display an analysis error trend that is
qualitatively similar to that of SAFE. However, the ERAv
gives closer or even larger analysis RMSEs for UV and GH
at 500 hPa than at 300 hPa for the NH, which is unrea-
sonable when compared to the estimations made with
other approaches. In addition, because the errors in the
ERA-5 reanalysis are not considered, ERAv displays a gen-
eral overestimation of analysis errors below 500 hPa and
an underestimation above 500 hPa relative to those from
SAFE.

As for the grid-point estimation of analysis errors,
SAFE can capture the major centers with relatively large
analysis errors, which are roughly consistent for UV and
T at 500 and 850 hPa. These include North Africa, extend-
ing eastward to the south of the TP at about 30◦ N; regions
adjacent to the Caspian Sea; northwestern North Amer-
ica; the North Atlantic and Pacific Oceans in storm track
regions for the NH; and the South Atlantic and Indian
Oceans for the SH. ERAv can also capture these major
regions with high analysis uncertainties but presents an
overall overestimation, especially for the lower levels that
experience stronger orographic effects, possibly due to
the systematic bias between the operational global mod-
els used for producing the GRAPES_GFS analysis and
the ERA-5 reanalysis. The accuracy of the SAFE analysis
error estimation is further assessed indirectly by compar-
ing the Day 1 forecast error distributions derived from
SAFE and the perceived error. These two methods pro-
vide overall similar spatial-mean forecast errors with less
than 6% differences (except for∼10% differences for T over
the 850-hPa NH). Moreover, the spatial correlations of the
forecast error distribution between the two approaches
exceed 0.8 for most variables and regions. These indirect
assessments further validate the accuracy of the spatial
analysis errors estimated by SAFE.

This study has demonstrated that SAFE performs
better than ERAv does in estimating spatiotemporal

analysis errors. Nevertheless, it is worthwhile to further
evaluate the accuracy of the SAFE algorithm by compar-
ing the SAFE estimations to verification methods using
high-precision independent observations for reference. In
the future, the SAFE method can also be applied to analy-
sis error estimations for other DA and prediction systems
of the weather, climate, and ocean and to the compar-
ison of analysis accuracy among different seasons. The
SAFE estimation of short-range forecast errors (e.g., six
hours) also has the potential to improve the accuracy of
the specification of static background error covariance and
the performance of DA systems. Due to the highly vari-
able concentration and complex phase change of water
vapor, its short-range true forecast errors may not satisfy
the exponential growth assumption in SAFE. Therefore,
the application of SAFE to variables like water vapor needs
further consideration and exploration.
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