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Abstract
Uncertain quantities are often described through statistical samples. Can sam-
ples for numerical weather forecasts be generated dynamically? At a great
expense, they can. With statistically constrained perturbations, a cloud of ini-
tial states is created and then integrated forward in time. By now, this technique
has become ubiquitous in weather and climate research and operations. Ensem-
bles are widely used, with demonstrated value. The atmosphere evolves in a
multidimensional phase space. Does a cloud of ensemble solutions encompass
the evolution of the real atmosphere? Theoretically, random perturbations in
high-dimensional spaces have negligible projection in any direction, including
the error in the best estimate, therefore consistently degrading that. As the bulk
of the perturbation variance lies in the null space of error, samples in multidi-
mensional space do not contain reality. An evaluation suggests that initial and
short-range forecast error and ensemble perturbations are random draws from
a high-dimensional domain we call the subspace of possible error. Error in any
initial condition is partly a result of stochastic observational and assimilation
noise, while perturbations explore other, mostly independent directions from
the subspace of possible error that may have resulted from other configurations
of stochastic noise. What benefits may arise from the deterministic projection of
such noise? Consistent with theoretical expectations, ensemble members con-
sistently degrade the skill of the unperturbed forecast until medium range. The
mean and all other products derived from ensembles suffer an 18-hour loss in
forecast Information. Since Information is a sufficient statistic, any rational user
can benefit more from the unperturbed, than from an ensemble of weather fore-
casts. Furthermore, case-dependent variations in the distribution or spread of
ensembles have no impact on commonly used metrics. Can alternative, statis-
tical applications provide comparable, or even higher-quality probabilistic and
other products, at the fraction of the cost of running an ensemble?
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1 INTRODUCTION

Weather forecasting is one of the greatest success sto-
ries of natural sciences (Bauer et al., 2015; Bennett and
Richardson, 1923). Drawing on the theory of dynamics
and thermodynamics, in an abstract setting, numerical
models replicate the larger, resolved-scale dynamics of
the atmosphere (Charney, 1949; Kalnay, 2003). In numer-
ical weather prediction (NWP), observations of the atmo-
sphere are collected and fused into an estimate of the initial
state, called an analysis. Numerical forecasts initialized
from such analyses then attempt to capture the temporal
evolution of the atmosphere by exploiting deterministic
relationships in nature. Useful forecast skill now extends
to 10 days lead time and beyond (Bauer et al., 2015; Zhang
et al., 2019) – a feat unimaginable just decades ago.

Despite continual reductions in initial error over the
decades, error still amplifies in the forecasts. Eventually
errors reach a level comparable with that in states ran-
domly chosen from the climatic distribution, at which
point forecasts become useless (Lorenz, 1982). By now it
is well understood that the loss of forecast skill is intrin-
sic to a large class of aperiodic deterministic systems called
chaotic dynamical systems (Li & Chou, 1997; Lorenz, 1963;
Mu et al., 2004; Thompson, 1957). As it is not due to
methodological problems, this loss of skill is unavoid-
able (Lorenz, 1963). Weather is predictable – but only for a
finite period.

Nature unfolds along a unique path in time and
three-dimensional space. NWP forecasts attempt to pre-
dict this evolution in a similar form, as a unique sequence
of events. Especially at longer lead times a single-value
forecast in itself, however, can be rather deceptive. Such
forecasts do not indicate how large their error may be,
and which part of their variance will match reality. This
is a major challenge for weather forecasters and users
alike as for optimal decision-making the level, and possi-
bly the nature of uncertainty must be known in advance
(Leutbecher & Palmer, 2008).

After a brief review of statistical alternatives
(Section 2), we introduce the concept of ensemble fore-
casting, a dynamical approach to assessing forecast
uncertainty, along with its current status and presumed
benefits (Section 3). Specific methodologies considered
in this study, such as forecast system attributes, some
metrics of forecast performance, including an analysis of
perturbations in multidimensional space, and the sources
of forecast error are discussed in Section 4. Long-held
assumptions about ensembles are revisited in Section 5,
while some theoretical explanation of the experimen-
tal results is offered in Section 6. The paper ends with
some conclusions and a discussion (Sections 7 and 8,
respectively).

2 STATISTICAL METHODS

2.1 Sampling

Statistical tools are available to describe uncertain quan-
tities like weather analyses or forecasts. A sample or a
distribution representing the expected error in the best
estimate can readily show the range of values a quan-
tity might take. Assuming, as an example, that the error
in an analysis follows a normal distribution with known
parameters, in Figure 1a the black curve centered around
reality, whose exact value is unknown, indicates the pos-
sible position of an analysis, while the blue curve offers
an example for a distributional estimate of reality, which,
if the distribution is statistically reliable (i.e., perturbation
variance equals error variance), is identical to the distribu-
tion of possible analyses, except translated to center on an
arbitrarily selected realization of the analysis.

Error, by definition, is unknown at the time a fore-
cast is made. Error variance, however, may be statistically
assessed and used as an indicator of forecast uncertainty,
as long as a representative joint forecast validation sam-
ple is available. Error variance in real time NWP guidance
(i.e., analysis or forecast) fields at lead time i (Gi), for
example, can be estimated based on error variance in a
sample of past guidance fields (Si) similar to Gi in lead
time, location, seasonality, regime, and so forth. (Hamill
& Whitaker, 2006; Li & Ding, 2011; van den Dool, 1989;
Zorita & von Storch, 1999):

e2
Gi
= E

(
e2

Si

)
, (1)

where E(⋅) represents the expected value, and e2
Si

and e2
Gi

are defined as:

e2
Si
= |Si − T|2, e2

Gi
= |Gi − T|2, (2)

and T is the corresponding truth or its proxy (e.g., a verify-
ing analysis, see Appendix A).

2.2 Products

As an example, a set of surrogate or perturbed analyses or
forecast fields (Pi) can be created by the addition of per-
turbation fields (𝛆i) to the best, unperturbed single-value
reference analysis or forecast field (sometimes also called
“deterministic,” that from here on we call control, Gi):

Pi = Gi + 𝛆i, (3)

Conveniently, past error patterns, if available, can serve
as perturbations to create a sample of surrogate forecasts
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(b) Independent degrees of freedom = 150

F I G U R E 1 Reality (red dashed vertical line, unknown in practice), the distribution of its best estimate assuming error in it is known
and normally distributed (black curve), an example for a best estimate (selected at a distance of the standard deviation from Reality, black
dashed vertical line), and the estimated distribution of reality around the best estimate (blue curve) in a one- (panel a, directional distance)
and 150-dimensional space (panel b, absolute distance). For further details, see text here and in Section 6.2.

(e.g., Delle Monache et al., 2013). If a large enough archive
of past error fields is not available, alternative sample gen-
eration methods include the addition of random noise
(Leith, 1974; Palmer et al., 1990), spatiotemporal shifts of a
single forecast (neighborhood methods, e.g., Atger, 2001),
or the collection of earlier initialized forecasts valid at the
same time (lagged forecasts, Hoffman & Kalnay, 1983).

The mean of a sample is an often-used central tendency
indicating the expected weather:

Ei =
1

Me

Me∑
k=1

Pi,k, (4)

where k is the index for perturbations, and Me is the sample
size. If perturbations are centralized before they are added
to a reference state:

Me∑
k=1
𝛆0,k = 0, (5)

the mean will equal the best estimate. In general, the mean
captures the common component shared by all members.
Typically, by filtering out presumably unpredictable noise,
the mean of representative samples lowers forecast error.

To ensure statistical representativeness, the variance or
spread of perturbation fields i is set equal to the estimated
error variance in the best estimate:

Vi =
1

Me

Me∑
k=1

||Pi,k − Ei||2. (6)

While the mean attempts to capture the predictable
forecast signal, the spread (i.e., the standard deviation)
measures the residual variability of sample points around
their mean. Importantly, statistical sampling of forecast
error involves the repeated, mechanistic insertion of per-
turbations around a single reference (control) forecast at
every lead time (Figure 2a).

Using representative samples created around the best
(control) single-value forecast, a variety of probabilis-
tic and other products can be easily constructed in
distributional or categorical (for semiclosed or closed
intervals, see Anderson, 1996; Ebert, 2001) forms. For
decades, statistical post-processing methods have been
used to estimate and reduce forecast error, and gener-
ate well-calibrated forecasts in a variety of probabilis-
tic and other formats (Scheuerer, 2014; Wilks, 2009).
Due to limitations in methodology and the size of fore-
cast archives, statistically generated surrogate forecasts,
however, generally lack dynamical balance. Past fore-
cast cases that best match the current forecast at a
selected region and lead time, for example, lose such
similarity at other locales and lead times. This is due
to the high dimensionality of the atmospheric circula-
tion (e.g., van den Dool, 1994). Hence to ensure rep-
resentativeness, the selection of past forecast cases is
often dependent on location and lead time (e.g., van den
Dool, 1989), which results in perturbations that lack spa-
tiotemporal and across-variable coherence or dynamical
balance.
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4 FENG et al.

F I G U R E 2 Schematic of statistical (a) vs dynamical (b) generation of forecast perturbations. In either case, initial perturbations
(bottom ellipsoids) are centered on a reference initial condition (R, typically a control analysis and forecast, vertical black line). Forecast
perturbations (top ellipsoids) are either statistically added and centered on R (a, blue arrows), or generated via the numerical integration of a
dynamical model from perturbed initial conditions (b, red arrows). P−, P+ (red solid), and E (red dashed) represent two perturbations initially
symmetric around, but later off-center of R, and the mean of the ensemble, respectively. For further explanation, see text.

3 DYNAMICAL ALTERNATIVE

3.1 Ensemble forecasting

Considering the limitations of statistical sampling algo-
rithms and the success of the numerical approach to
weather forecasting, a desire for the dynamical sampling
of forecast uncertainty arose early on. Instead of the repeti-
tive sampling of individual forecast variables (e.g., weather
parameters at selected locations and lead times), why don’t
we sample the dynamical evolution of the entire atmo-
sphere? In the 1960s an idea about a “glob of points, each of
which would follow its own deterministic path” emerged
(Edward Epstein, quoted by Lewis, 2005). The basic con-
cept of ensemble forecasting is rather simple. Insert pertur-
bations around the analysis of the atmosphere only once,
at the initial time. To represent uncertainty in the anal-
ysis (Equation 1, see also Section 4.3.3), the magnitude
of initial perturbations is set equal to that estimated in
the analysis. And to retain skill in the mean, the initial
sample is typically centered on the best, control estimate
of the state (Equation 5). To create an ensemble, forecast
perturbations are then dynamically generated by numeri-
cal integrations of the same (or to simulate model-related
errors, a different, e.g., Houtekamer et al., 2009) numeri-
cal model used to make the unperturbed control forecast
(Figure 2b). A collection of such perturbed initial and
forecast conditions are hence called an ensemble.

In the late 1980s and early 1990s, following experi-
ments with models only about half the resolution of oper-
ational forecasts at the time, the idea gained momentum.
In 1992, related efforts led to the operational implemen-
tation of the Global Ensemble Forecast System (GEFS)

at the National Centers for Environmental Prediction
(NCEP, Toth & Kalnay, 1993). The routine weekend pro-
duction of ensemble forecasts at the European Center for
Medium Range Weather Forecasts (ECMWF) commenced
shortly afterward (Molteni et al., 1996). The rest is history
(Lewis, 2005).

The dynamical generation of an ensemble, of course,
comes at a significant cost. Depending on membership and
resolution, in comparison with a single forecast, an order
or two more computational resources may be required.
Still, today dynamically generated ensembles constitute
the main or sole mode of operation at most or all numerical
weather and climate prediction centers (Chen & Li, 2020;
Palmer, 2019; Zhou et al., 2017). After decades of resis-
tance, operational forecasters and other practitioners from
a wide range of application areas (from hydrology, e.g.,
Schaake et al., 2007, to agriculture, energy, and other sec-
tors, e.g., Alemu et al., 2011; Calanca et al., 2011; Su
et al., 2014) and across many time-scales (from nowcast-
ing, e.g., Liguori et al., 2012, to multiseasonal and decadal
forecasts, e.g., Krishnamurti et al., 1999; Hou et al., 2018;
Liu et al., 2023) have also embraced the practice (e.g.,
Bougeault, 2010). Ensembles and products derived from
them, whether they represent the best possible guidance
or not, are widely used, with proven value.

3.2 Perceived benefits

Over the past decades, the potential benefits of ensemble
forecasting have been discussed extensively. In this section
we offer a brief overview of the perceived benefits. A more
detailed analysis follows in Section 5.
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FENG et al. 5

F I G U R E 3 Talagrand (or analysis rank) diagram indicating
the frequency of the verifying analysis falling into the intervals
defined by the 20 ranked values of 500-hPa geopotential height
ensemble member forecasts at individual grid points, aggregated
over the northern hemisphere (NH) extratropics (30◦–65◦ N) over
the three-month experimental period at 0.5 (a) and 14.5 days lead
times (b). A flat distribution (dashed horizontal lines) indicates a
perfectly reliable ensemble (where forecast probabilities of events
exactly match their observed frequencies).

3.2.1 Alternative scenarios

An attractive feature of ensembles is that they offer dynam-
ically consistent alternative scenarios for future weather.
Talagrand or Analysis Rank Histograms (Figure 3, C
andille & Talagrand, 2005) demonstrate that the proxy for
reality falls with about the same frequency in all intervals
defined by an ordered set of ensemble members, an indi-
cation that ensemble scenarios are equally likely. A triv-
ial but potentially powerful application is the direct feed
of individual ensemble members into decision-making
algorithms. A cost–benefit analysis in the context of the
alternative forecast scenarios allows sophisticated users to
optimize their weather-dependent course of actions (e.g.,
Alemu et al., 2011; Khan et al., 2021). A wide variety
of probabilistic and other products can also be derived
from such samples (Vannitsem et al., 2021) just as easily
as from statistical samples generated around single-value
forecasts.

3.2.2 Error reduction

Ensembles are well known for the low error in their mean
(Equation 4). As shown in an example from the NCEP
ensemble (Appendix A), the error in the mean (red line in
Figure 4) is typically much below that in the control fore-
cast run at the same resolution as the perturbed members
(black). This is despite a noticeably higher error in the per-
turbed forecasts (blue line in Figure 4). The error reduction
in the mean is considered a major benefit of ensembles. A

F I G U R E 4 Perceived root-mean-squared error for the
control (black), perturbed (blue), ensemble mean (red), and median
(green) northern hemisphere (NH) extratropical 500-hPa height
forecasts averaged over the three-month experimental period.

series of studies have suggested that the reduction in fore-
cast error is dynamically conditioned, primarily due to a
large projection of initial ensemble perturbations onto the
“case-dependent” error in the control analysis (e.g., Toth &
Kalnay, 1997, TK97, Ebert, 2001; Wei & Toth, 2003; Buizza
et al., 2008; Feng et al., 2019). This presumed effect, often
referred to as “nonlinear filtering,” is thought to “result in
a superior ensemble mean forecast [compared] to a sin-
gle or even higher-resolution control forecast” (Du, 2007).
At the same time, it is maintained that a purely statistical
“smoothing effect of [ensemble] averaging partially con-
tributes to this superiority but… in a much less degree…
compar[ed] to the nonlinear filtering” (Du, 2007).

3.2.3 Spread–error relationship

Case-to-case variations in ensemble spread (Equation 6)
are considered an important dynamical indicator of varia-
tions in expected forecast error variance (e.g., Buizza, 1997;
Goerss, 2000; Murphy, 1988). Many link spatiotemporal
variations in spread to fluctuations in atmospheric insta-
bilities, presumably affecting forecast error variance (e.g.,
Ferranti et al., 2015; Palmer, 2000). For further discussion,
see Section 5.4.

3.2.4 Probabilistic forecasts

A series of related papers (Christensen, 2015; Flow-
erdew, 2014; Hagedorn & Smith, 2009 and Roulston &
Smith, 2003) compare verification scores for probabilistic
products derived from an ensemble vs a higher-resolution
control forecast. Roulston and Smith (2003), for
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6 FENG et al.

F I G U R E 5 Schematic diagram of ensemble forecast
trajectories: the control (green line), perturbed (black), and
ensemble mean (long dashed brown) forecasts, and reality (dashed
red). Courtesy of E. Kalnay, see text for details.

example, find that after applying very similar sta-
tistical post-processing methods, 3–10-day lead time
ensemble-derived probabilistic forecasts have a much
lower ranked probability score (RPS; Murphy, 1969)
compared to products derived from a higher-resolution
unperturbed forecast. Roulston and Smith (2003) and
others attribute the favorable score for ensembles to their
case-to-case varying distribution that provides “quantita-
tive estimates of the likely forecast accuracy,” concluding
that ensemble-based “prediction… is inherently superior
to a single “best guess” forecast.”

3.2.5 Bracketing reality

From the beginning, a main objective of ensemble fore-
casting has been the dynamical sampling of uncertainty
in the forecast evolution of the atmosphere. An ensemble
brackets or encompasses truth if reality is contained in its
range. As is well known, a statistically reliable Me-member
ensemble brackets any single indicator of reality or its
proxy in the majority [i.e., (Me− 1)/(Me + 1) fraction] of
the cases (Descamps & Talagrand, 2007). As observed for
commonly used variables, most of the time the proxy for
truth (Appendix A) falls in the range of even somewhat
unreliable ensemble forecasts (Figure 3a). Based on such
experience in one dimension, the community has assumed
that bracketing holds for the multidimensional space of
atmospheric dynamics, too. This assumption is reflected in
schematics like Figure 5 (reproduced from Kalnay, 2017),
where the evolution of the real atmosphere is contained in,
or dynamically bracketed by the cloud (i.e., the collection)

of ensemble forecast trajectories. This assumption will be
evaluated in Section 5.5.

The introduction of ensembles was partly motivated
by the applications, results, and expectations reviewed
above. As ensembles proliferated in the weather fore-
cast and user communities, some of the expectations
solidified as presumptions. Many of these notions have
never been critically examined. Motivated by, and build-
ing on the pioneering study of Leith (1974), the rest
of this paper revisits some long-held assumptions about
ensembles.

4 CONCEPTS AND
METHODOLOGY

The assessment of the quality of ensembles is critical to
the optimal use and further development of forecast sys-
tems. In this section we review key concepts and tools we
consider in the evaluation of ensemble forecasts.

4.1 Forecast performance attributes

4.1.1 Reliability

Based on a review of related literature, (Toth et al., 2005)
identified two forecast performance attributes: statistical
reliability and statistical resolution (e.g., Murphy, 1972).
Weather forecasts are in the form of abstract “signals,”
each of which corresponds to a preferably unique weather
event or condition in nature. Forecast symbols, as mes-
sengers in any communication, are arbitrary. Statistical
reliability (e.g., Murphy, 1972) or calibration is one of two
main attributes of forecast performance, assessing how
truthful the forecast language is to its implied or expressly
stated meaning. Specifically, reliability is not concerned
about the sequence of forecast and observed events, just
about their time average statistics. For example, is the
mean of a sample of forecasts equivalent to the mean of
corresponding observations? Naturally, metrics of reliabil-
ity depend on the form of forecasts (i.e., symbols used, e.g.,
single-value or probabilistic, see Toth et al, 2003). There-
fore the reliability of forecasts expressed in different forms
is quantitatively not comparable. Statistical reliability is
key in the practical use of weather forecasts (Taillardat
et al., 2016). Fortunately, just as a text can be corrected
for spelling errors without affecting its meaning, fore-
cast bias can be statistically corrected based on past per-
formance (i.e., calibration, e.g., Krzysztofowicz & Kelly,
2000).
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FENG et al. 7

4.1.2 Resolution

Weather forecasts attempt to capture the temporal evo-
lution of reality. As such, in contrast to their form, the
sequence of events foreseen is the content of forecasts. Sta-
tistical resolution (e.g., Murphy, 1972) concerns how well
the dynamical sequence of events in nature is captured
by forecast signals indicating such events. In other words,
resolution is a system’s ability to foresee the sequence of
future weather events, which in a loose sense can also be
called the skill of forecast systems. Resolution is indepen-
dent of the particular form or signals used and is arguably
the inherent value, and the most critical attribute, of fore-
cast systems. Note that resolution reflects only the simi-
larity in the sequence but not in the long-term statistics
of observed and forecast signals. As reliability is the other
way around, the two main attributes of forecast systems are
completely independent (Toth et al., 2005).

Importantly, reliability and resolution are the only two
attributes of forecast performance based on a compari-
son of forecasts and observations; other, diagnostic metrics
concern only forecasts or observations alone. Therefore,
our evaluation will focus on these two attributes since
they provide a complete assessment of forecast system per-
formance. Furthermore, as Krzysztofowicz (1992) noted,
metrics of resolution are sufficient statistics in a sense that
if their output can be calibrated, a forecast system with
superior resolution will provide more economic benefit
to any user compared to any other forecast system. So in
terms of potential benefits, it is enough to compare the
statistical resolution of forecast systems.

It follows that reliability and resolution of ensemble
forecasts and products derived from them can (and prefer-
ably should) be evaluated separately. Most commonly used
metrics of forecast performance, however, compound the
two attributes with undetermined weights (and possibly
include other elements, too). Since our focus is on fore-
cast value, for a comparative evaluation of different fore-
cast systems (such as single-value control, and multivalue
ensemble forecasts), and for ease of interpretation, we will
use a metric of resolution as a primary verification statistic.

4.2 Forecast Information and Noise

As noted above, since they depend on the form of forecasts,
reliability scores are quantitatively not comparable across
different forecast systems. On the other hand, irrespec-
tive of their form, all forecast systems attempt to predict
the sequence of future events; they differ only in what
signals they use for communicating this. Unlike relia-
bility, resolution therefore can be measured by common
metrics, each assessing correlation between forecast and

F I G U R E 6 Schematic representing the phase space position
of the seasonally and diurnally varying climatic mean (C), and
unperturbed (F), perturbed (P), and ensemble mean forecast (E),
and the corresponding truth or its proxy (T) on the Information
(along the verifying analysis anomaly, vertical axis) and Noise
(orthogonal to the verifying analysis anomaly, horizontal axis)
plane. P and E are rotated into the C–T–F plane. Key performance
metrics used in this study include the root-mean-squared error
(F–T, or its square, the variance error, black dashed line); variances
of forecast Information (Fo–C, solid green) and Noise (F–Fo, dashed
cyan); the analysis anomaly missed by the forecast (T–Fo, solid
pink); and pattern anomaly correlation (cosine of the angle at C).
The position of the points indicates the performance of twice-daily
eight-day lead time NCEP GEFS northern hemisphere (NH)
extratropical (30◦–65◦ N) 500-hPa height forecasts averaged over the
December 1, 2017–February 28, 2018 experimental period. For
further details, see text.

observed anomalies (Krzysztofowicz 1992, Krzysztofowicz
& Evans, 2008).

4.2.1 Information

In verification, we compare forecast quantities with the
observed state, described here with its case-dependent
anomaly from the climatic mean.i Let us consider fore-
cast anomalies from the climatic mean of a model with
realistic variability,ii standardized by the climatic variance
(Figure 6). Further, we consider an orthogonal decompo-
sition of forecast anomalies along, and orthogonal to the
observed anomaly. Predictive capability or statistical reso-
lution is measured here by the variance of the projection of
forecast anomaly onto the observed anomaly, defined with
respect to the climatic mean of nature:

Ii =
||Fo

i − C||2
|T − C|2 , (7)
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8 FENG et al.

which we call forecast Information (I). Fi and T are an
i lead time forecast and the corresponding truth or its
proxy (e.g., a verifying analysis), respectively, C is the
climatic mean, Fo

i is the orthogonal projection of Fi on
the observed anomaly T − C, and |•| is the Euclidean
norm. In the rest of the manuscript, Information refers
to I defined above. Information is the variance of the
observed anomaly explained by a forecast, a direct mea-
sure of predictive capability. In other words, Informa-
tion is the anomaly variance shared between reality and
a forecast.

4.2.2 Noise

In contrast, next we define variance in a forecast’s anomaly
that is orthogonal to the observed anomaly as Noise:

Ni =
||Fi − Fo

i
||2

|T − C|2 . (8)

Noise is an indicator for the level of divergence
between a forecast and reality. Since Information that is
identical to, and Noise that is unrelated to the observed
anomaly constitute an orthogonal decomposition, for fore-
cast systems with a realistic level of variance they are not
independent quantities:

Ii + Ni = 1. (9)

Information and Noise are therefore positively and
negatively oriented, alternative and interchangeable
metrics of forecast performance, respectively. Informa-
tion/Noise variances standardized by the climatic variance
range between 1/0 (perfect knowledge about nature)
and 0/1 (no knowledge), respectively. Though related,
Information and Noise defined above are different from
“information entropy” (Shannon 1948) or noise used in
signal processing (e.g., Tuzlukov, 2010, see Appendix B).

4.2.3 Error

Error variance (Equation 1) is one of the most often-used
metrics of forecast performance. Error measures the dif-
ference between a model forecast and reality. Theo-
retically, the initially quasi-exponential, then saturating
growth of forecast error can be described by a logis-
tic curve (Lorenz, 1982, see Appendix C). As seen from
Figure 6 (dashed black line), error can be decomposed into
Noise contained in (dashed cyan line, Equation 8), and
Information missed by a forecast (continuous pink line,
Equation C2).

4.2.4 Information density

Pattern anomaly correlation (PAC or ri, Jolliffe & Stephen-
son, 2003) is another commonly used performance metric,
an inverse measure of the angle between forecast and ver-
ifying analysis anomalies taken from the climatic mean
(Fi − C and T − C, respectively in Figure 6). The square
of PAC is interpreted here as Information density (Id

i , see
Figure 8d):

Id
i = r2

i =
Ii

Ii + Ni
. (10)

Note that for forecasts with the same, and only with
the same anomaly variance, Information and Information
density are interchangeable.

4.3 Divergence of trajectory segments

At initial time, data assimilation systems capture partial
Information about the state of nature, which numerical
models then project into the future. Forecast error can be
interpreted as the difference between segments of trajec-
tories of dynamical systems. The difference between the
evolution of two initially close segments on the trajectory
of one, or two similar dynamical systems may be due to a
number of factors.

4.3.1 Difference in model dynamics

An important difference between the real atmosphere and
its numerical models, beyond the latter being an abstract
representation of reality, is that models explicitly consider
only the larger-scale circulation. Following Leith (1974)
and Zhou and Toth (2020), we assume that on larger
scales well-resolved, numerical models replicate atmo-
spheric dynamics in the extratropics near perfectly. Hence
our study uses NH extratropical 500-hPa height as a pri-
mary dataset.

4.3.2 Difference between equilibria

Though numerical models capture the dynamics of
large-scale extratropical circulation well, their equilib-
rium (i.e., climatic mean) state differs from that of the
real atmosphere. In other words, the attractor of numer-
ical models is displaced from that of reality. When a
model is initialized with a state close to that observed, it
gradually drifts toward the model’s own climatology. By
definition, this process is governed by the stable dynam-
ics of the model. As climatic drift in NH extratropical
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FENG et al. 9

500-hPa height is negligible, differences between the cli-
matic mean of forecast and reanalysis fields are not con-
sidered in the definition of anomalies (Equations 7 and
8). Considering also Section 4.3.1, in the rest of this study
we disregard the effect of model imperfections on forecast
performance.

4.3.3 Off-trajectory states

Though ideally the best (i.e., the control) and perturbed
analyses of the atmosphere should all be in dynamical bal-
ance, in reality, both lie off the model trajectory (which
approximates the trajectory of the large-scale motions of
reality). Analysis fields contain random noise originat-
ing from both observational error and assimilation meth-
ods, while perturbations reflect intentionally imposed
constraints (e.g., Tribbia & Baumhefner, 2004; Molteni
et al., 1996; TK97; Houtekamer & Mitchell, 1998). When
a numerical model is applied to such imbalanced atmo-
spheric states, over a relatively short (i.e., shorter than
two-day) period, the stable part of dynamics pulls the
evolving states close to the model trajectory. Once a fore-
cast asymptotes the trajectory, the initial imbalance has
no further effect on the divergence of trajectory segments.
This is consistent with the findings that initial perturba-
tions alter forecast performance just over a relatively short
time period, after which only perturbation amplitude mat-
ters (Buizza et al., 2005; Magnusson et al., 2009; Raynaud
& Bouttier, 2016). Therefore, imbalances in the evolution
of error and perturbations are not considered explicitly in
this study.

4.3.4 Difference in the position on the
trajectory

The divergence in the evolution of two points on the trajec-
tory of a system that are originally close in phase space (but
distant in time) is primarily driven by unstable dynamics
(Buizza et al., 1993; Feng et al., 2018; Lorenz, 1982; Mu
et al., 2003). In the absence of model error, forecast uncer-
tainty and the loss of predictability that ensembles aim
to quantify arises due to such divergence. Assuming the
variance distance between trajectory segments (i.e., error
variance) follows a logistic evolution (see Section 4.2.3),
both the growth of Noise and the loss of Information can
be described analytically. As seen in Appendix C, due to
the effect of unstable dynamics, with increasing lead time,
Information is gradually converted into Noise variance,
until all skill is lost. As the effects due to imbalances, or dif-
ferences in the dynamics and equilibrium of systems are
all negligible, error and perturbation behavior studied in

this paper are ascribed to the effect of unstable dynamics
alone.

4.4 Perfect model – perfect ensemble
setup

Common verification practice also followed in this study
involves the evaluation of forecasts such as the 20-member
NCEP ensemble used in this study against verifying anal-
ysis fields. To eliminate the possible effect of specific data
assimilation, modeling, and ensemble generation methods
on evaluation results, in this study verification statistics
will also be recalculated for 19 remaining members of the
NCEP ensemble, replacing the verifying analysis with a
randomly chosen ensemble member as truth. Reality and
error in this simulated environment are generated by the
same techniques as forecasts and perturbations, thus elim-
inating any influence from imperfect NWP methodologies.
Following a long tradition established with the use of the
term “perfect model” in observing system and other simu-
lated experiments, we refer to this as a “perfect ensemble”
setup. Note that the word “perfect” here does not imply
an ultimate or ideal ensemble, but rather, a simulated
environment where the ensemble forecast system uses
a numerical model and perturbation generation method
that are identical to those used in simulating reality and
the error in its best estimate.

5 EXPERIMENTAL RESULTS

Though ensembles are of multivalue form, just like a single
control forecast, their members cover zero in probability
space. Hence probabilistic and related products, just as
from a single forecast, must be derived via statistical inter-
and extrapolation (Vannitsem et al., 2021). And whether
single-value (e.g., Delle Monache et al., 2013; Hamill &
Whitaker, 2006; van den Dool, 1989) or ensemble-derived
(e.g., Taillardat et al., 2016), the reliability of probabilistic
and other products can only be assessed and enforced by
statistical methods, using a sample of past cases (Krzyszto-
fowicz & Kelly, 2000).

Unfortunately, approximations in complex numerical
models introduce biases into both single-value and ensem-
ble forecasts. Difficulties in the estimation of the magni-
tude of initial, and in the representation of model-related
errors also render the spread and distribution of ensem-
ble forecasts unreliable (Vannitsem et al., 2021). Hence
in terms of one of the two major forecast performance
attributes, statistical reliability, ensembles offer no ben-
efit compared to single-value NWP forecasts. Products
from both need to be statistically formulated, assessed and
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10 FENG et al.

(a) NCEP ensemble (b) Perfect ensemble

F I G U R E 7 Northern hemisphere (NH) (30◦–65◦ N) 500-hPa height-perturbed forecast root-mean-squared error evaluated against the
verifying analysis (a) and a randomly selected member (b), standardized by the error in 0.5–15.5 (panel a) and 0–16-day (panel b) control
forecasts, ranked from lowest to highest, and averaged over all 180 cases. The top and bottom of whiskers and boxes represent the average of the
extreme sample point and 25%/75% quantile values of the 20 and 19 ranked perturbed forecast error values in panels (a) and (b), respectively.

calibrated before their use. Next we evaluate what benefits
ensembles may bring in terms of the second major forecast
performance attribute, statistical resolution or forecast
skill, or other unique aspects listed in Sections 3.2.1–3.2.5.

5.1 Forecast quality

Diagrams like Figure 3b (Section 3.2.1) attest that mem-
bers of ensembles offer equally likely scenarios. But are
those scenarios also equally likely with the forecast started
from the best, unperturbed control analysis?iii An abun-
dance of evidence indicates that they are not. Assuming
perturbations are random draws from the distribution of
initial error (Sections 2.1 and 3.1), based on simple sta-
tistical considerations the addition of perturbations to the
best control analysis doubles their error variance com-
pared to the control (Palmer et al., 2006). This is born out
in results from operational systems like the NCEP GEFS,
where initial and short-range perturbed forecast error vari-
ance is about double that in the control forecast, negatively
affecting performance at all ranges (cf. root-mean-squared
[rms] error for the perturbed [blue] and control forecasts
[black] in Figure 4). Moreover, we find that during the first
few days, error variance in perturbed forecasts is higher
not only in an expected sense, but also for each individ-
ual member. Shown in Figure 7a,b is the distribution of
error in operational and perfect ensemble (see Section 4.4)
perturbed forecasts, standardized separately in each case
and for each lead time by the error in the control forecast.
Apparently, shifts in phase space location introduced by
ensembles induce a degradation in forecast quality simi-
lar to that due to spatiotemporal or other shifts made in a
statistical sample generation.

Likewise, perturbed forecasts (blue line in Figure 8b)
have lower Information compared to the control forecast
(black line), reflecting an 18-hour loss in skill, equiva-
lent to about an eight-year setback in NWP developments
(Zhou & Toth, 2020). Significantly, the mean of the ensem-
ble (red) shows a similar loss of Information.iv The addi-
tion of random initial perturbations, like noise acquired
in signal propagation, reduces Information in all mem-
bers (not shown). One may argue, then, that unless other
sources of Information are also considered, all products
derived from ensemble forecasts will have Information
lower than that in the control forecast, which is a key
conclusion of this study. This is because new Information
about nature cannot be created by taking a function of
constituent members all characterized by lower quality.
This situation is exemplified by the lower level of Infor-
mation in the median of the ensemble (green curve in
Figure 8b). We recall that Information is a measure of
statistical resolution, or the inherent value in forecasts.
Since Information is a sufficient statistic (Section 4.1), the
results here indicate that any user may derive more ben-
efit from a control forecast than from an ensemble. For
optimal decision-making, one must use the control fore-
cast, possibly with an added, statistically derived estimate
of uncertainty. Is there some other value present in ensem-
bles that may be missed by either of the two main forecast
performance attributes, reliability or resolution?

5.2 Error reduction

The lower error in the mean of an ensemble (cf. red and
black lines in Figure 4) suggests yes, ensembles may have
other benefits (Section 3.2.2). But how do we reconcile
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FENG et al. 11

F I G U R E 8 Sample mean
non-standardized (a) total variance, (b)
Information variance, (c) Noise variance,
and (d) Information density (or pattern
anomaly correlation) of 500-hPa
geopotential height forecasts in the northern
hemisphere (NH) extratropics (30◦–65◦ N)
over the 90-day experimental period
(Appendix A). The dashed line in panel (a)
indicates the climatic variance present in the
analysis.

density (PAC)

the reduction of error in the mean (Figure 4), a negatively
oriented performance metric, with a concurrent decrease
in Information (Figure 8b), a positively oriented metric?
According to Equation (C3) (Appendix C), error can be
reduced either by increasing Information, or decreasing
Noise. As revealed by Figure 8c, the moderate reduction
in Information is more than compensated with the large
reduction of Noise in the mean. This is also apparent in the
evaluation of eight-day forecasts in Figure 6. Apparently,
the mean of an ensemble is a very efficient Noise filter. This
is also reflected in the well-known, much smoother char-
acter of the mean as compared to single-value forecasts
(Ancell, 2013), which is reflected in a significant reduction
of overall variance in the mean (Figure 8a). Therefore, con-
trary to commonly held expectations (Section 3.2.2), error
in the mean is reduced not because of a gain, but despite a
loss of forecast Information, due to an effective reduction
of unpredictable Noise.

5.3 Probabilistic forecasts

Here we revisit the reason behind the lower error
metrics found for ensemble- vs control-based probabilistic
forecasts (Section 3.2.4). It turns out that unlike assumed
by many, commonly used probabilistic scores like

Continuous Ranked Probability Score (CRPS, and its cat-
egorical equivalent, RPS) are not affected by variations
in the shape or spread of forecast distributions (Hers-
bach, 2000). They depend only on the average of the spread
of forecast distributions over the verification period. If not
“case-dependent” variations in the shape of distributions,
as suggested in the literature, then what explains the lower
RPS error for ensemble-derived probabilistic forecasts?
As Hersbach (2000) points out, CRPS (and hence RPS)
is analogous to mean absolute error (MAE, which itself
is closely related to error defined by Equation C1). The
significantly lower RPS and other scores reported in Roul-
ston and Smith (2003) and other studies for probabilistic
forecasts derived from an ensemble vs a single control
forecast is then a result of, just as in case of the error in
the mean (Section 5.2), the reduced level of Noise in the
position of ensemble distributions (i.e., their median) as
compared to single-value forecasts (cf. green and black
curves in Figure 8c).

5.4 Spread–error relationship

An indication of the magnitude of forecast error (or error
variance, Equation C1) by spatiotemporal fluctuations in
ensemble standard deviation (or spread, Equation 6) is
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12 FENG et al.

another perceived benefit of ensembles (Section 3.2.3). The
correlation between the two quantities, however, is rather
low, explaining only about 10% in the day-to-day variability
of the error magnitude (see, e.g., Figure 5 of Hopson, 2014).
Perhaps not surprisingly, we found no anecdotal or doc-
umented evidence for the practical use of this relation-
ship. As we saw in Section 5.3, fluctuations in spread
certainly do not enhance forecast Information. What may
then explain the correlation between spread and error?
By-and-large, the realizations of the atmosphere follow a
multinormal distribution (Toth, 1995). In such a space,
distances between states, just as in a univariate normal dis-
tribution, depend on a state’s anomaly from the climatic
mean (Li et al., 2018). As forecast error measures the dis-
tance between trajectory segments of dynamical systems in
multidimensional space (Section 4.3), it must also depend
on the anomalies of the forecast and observed states. Evi-
dence of this relationship for different forecast systems
is presented by Toth (1991a, 1991b) and Kleeman (2011).
We hypothesize that the weak relationship between spread
and error may at least partially be explained by the depen-
dence of both quantities on the climatic anomaly of the
control forecast.

5.5 Bracketing in multidimensional
space

In one dimension, all perturbed states necessarily lie in
the direction defined by reality and its forecast. The con-
cept of bracketing, or encompassing truth is straightfor-
ward: reality must fall within the range of perturbed states
(Section 3.2.5). Assuming a well-behaved unimodal distri-
bution, this is possible only if some perturbed members
have an error lower than the unperturbed estimate of real-
ity, which is what we observe for all variables in today’s
ensembles. Does bracketing in any selected single direc-
tion guarantee bracketing in the multidimensional space
of dynamics?

First we generalize the intuitive concept of bracket-
ing into multidimensional spaces like that occupied by the
dynamics of the atmosphere. There, just as in one dimen-
sion, bracketing is considered satisfied if reality falls in
the range of perturbed states in the direction defined by
reality and its forecast. This is the case-dependent direc-
tion of error in the unperturbed control, out of many
independent degrees of freedom. Reduced error hence is
still a necessary (but not sufficient) condition for brack-
eting in multiple dimensions. For bracketing to work
in this space, perturbations must have a strong projec-
tion on, or be congruent with, the case-specific direc-
tion of error in the control. Bracketing case-specific error
patterns in a multidimensional space is a much harder

challenge than bracketing single one-dimensional vari-
ables.

Experimental results in Figure 7 show that even for
a subset of the atmosphere (500-hPa height variable over
the NH extratropics) the necessary condition for bracket-
ing of reduced error in the perturbed states is violated.
Until day 3.5 and day 5, all members of the operational
and perfect ensembles, respectively, have an error larger
than that in the control forecast. An alternative interpre-
tation of Figure 7 is that the time evolution of reality (or
its proxy), the control forecast, and the range of perturbed
forecasts are shown by the Y= 0 line, the Y= 1 line, and
the boxplots, respectively. Figure 7 thus can be considered
as a factual alternative to popular schematics like Figure 5
circulating in the community about ensemble forecasting.
Clearly, in the case-dependent direction of error in the con-
trol forecast (and also in the control analysis in Figure 7b),
reality or its proxy is far removed from the range of ini-
tial and short-range ensemble members. The widely-held
assumption that the evolution of the atmosphere is con-
tained in dynamically generated ensembles (Section 3.2.5)
is untenable.

6 THEORETICAL
CONSIDERATIONS

6.1 Simulation

In search of an explanation for the universal loss of skill,
and the failure of dynamical bracketing demonstrated in
Figure 7, we now turn our attention to the nature of
high-dimensional spaces. For a quantitative assessment,
we hypothesize that (i) unstable atmospheric dynamics
responsible for the divergence of forecast and observed
trajectory segments (cf. Section 4.3.4), as suggested by
Toth (1991b, 1993) and Palmer et al. (2006), evolve in a
multinormal space with a large number of independent
and identically distributed (iid) variablesv (Md), and that
(ii) error and ensemble perturbations, after a short period
of transitionary behavior (see Section 4.3.3) are random
draws from this domain we call the subspace of possible
error. If these assumptions are valid, some basic features of
forecast error and ensemble perturbation behavior should
be statistically reproducible.

Our aim here is to compare the error in the ini-
tial unperturbed and perturbed states. While this can
be accomplished for the perfect ensemble described in
Section 4.4, we will use 12-hour forecasts instead as an
indicator for error in the operational system. Plotted in
Figure 9 are 12-hour lead time operational (20 dots, panel
a) and perfect initial ensemble members (19 dots, panel b)
for 180 cases along with the proxy for reality (vertical bar),
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FENG et al. 13

F I G U R E 9 Perturbed northern hemisphere (NH) 500-hPa height (a) operational 12-hour forecasts, and (b) perfect initial ensemble
members (3600 and 3420 individual blue dots from 20 and 19 members from each of 180 cases for panels a and b, respectively), plotted along
(horizontal axis) and orthogonal (vertical axis) to the error in the unperturbed control 12-hour forecast (panel a, open circle at 0,0) or control
analysis field (panel b) on a scale standardized by the sample mean error in the control, and the corresponding proxy for truth (black bars).
Panel (c) is a statistical simulation of panel (b) with a 33 dof standardized multinormal distribution. For further details, see text.

as a function of distance from the control 12-hour fore-
cast (panel a) or control analysis (panel b, both plotted at
point 0,0) in the direction of error in the control (X axis,
directional distance) and in the subspace orthogonal to it
(Y axis, absolute distance in the null space of error in the
control), on a scale standardized by the sample mean error
in the control. Note that the distance of the bars and points
from the control point (0,0) measures the size of error in,
and perturbation around the control.

To validate the hypotheses above, we proceed with the
generation of 20 random points from a distribution with
a varying number of iid standardized normal variables
(i.e., degrees of freedom [dof]). Just like in the perfect
ensemble experiment reported in Figure 9b, one randomly
chosen point is considered reality, while the remaining
19 the perturbed states. And just as is the case with the
perfect ensemble, the simulation experiment is repeated
180 times. We find that the distribution of the error from
the perfect and simulated ensembles are statistically indis-
tinguishable at the 5% significance level for samples with
a dof in the range of 28–38, with dof= 33 yielding the
best fit (Appendix D), for which the results are plotted in
Figure 9c.

Notable on all panels in Figure 9 is the small projection
of perturbations introduced around the control forecast or
analysis (0,0) onto the realization of error in the control
(i.e., absolute value of X of perturbed points). This is in con-
trast with the magnitude of perturbations in the null space
of error (i.e., Y value of perturbed points), which is com-
parable to the magnitude of error (i.e., distance of black

bars from the control at 0,0). Consequently, error variance
for most members is almost doubled compared to the con-
trol (cf. the distance between reality and the control vs the
perturbed states, consistent with rms error at 12-hour lead
time in Figure 4). As error in all members is increased
compared to the control, their cloud forms further away
from reality. Consistent with Figure 7, reality or its proxy
is not encompassed by either the operational or perfect
ensembles. In all cases, the simulated ensemble also fails
to bracket truth. Unlike in one dimension, statistical relia-
bility (i.e., perturbation variance matching error variance)
apparently does not imply bracketing in multidimensional
space.

The remarkable visual and statistical similarity of the
simulated (Figure 9c) to the perfect ensemble (Figure 9b),
and a lesser, but still strong similarity to the operational
ensemble data (Figure 9a) indicate that the experimental
results are consistent with the hypotheses that (i) per-
turbation and error dynamics captured by NWP analyses
and forecasts evolve in a multinormal space with a large
number of iid variables, and that (ii) ensemble pertur-
bations and error are indeed random samples from such
a space. The space of resolved-scale error and perturba-
tion dynamics is contingent on Information captured in an
analysis or forecast. The similarity of panels a and b in both
Figures 7 and 9 also indicates that the problematic behav-
ior observed in the operational ensemble, including their
low skill and failure in bracketing cannot be addressed
by perfecting data assimilation, modeling, or perturbation
methodologies used.
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14 FENG et al.

6.2 Interpretation

For an interpretation of error and perturbation results
in Figure 9, we consider the orthogonal decomposi-
tion of anomaly variance into Information and Noise
(Section 4.2). Depending on available observations and
data assimilation techniques, NWP analyses and forecasts
capture a certain amount of Information about the evolu-
tion of the larger-scale condition of the atmosphere, often
considered deterministic. According to our hypotheses
(Section 6.1), two states of the atmosphere given at the
resolution of today’s operational systems can differ in Md
independent ways, which for the NH extratropical height
is estimated at 33. Given stochastic observational and
methodological noise, error in any analysis is then just
one random realization from this finer-scale “subspace of
possible error.” And perturbations which we assume are
random draws from the same space simulate alternative
realizations of analysis error that could have happened
under different realizations of stochastic observational
and methodological errors. Importantly, both Informa-
tion about nature, and Noise contaminating a forecast are
carried forward by the same model dynamics, albeit at
different scales, used in numerical models.

In one dimension, reality and its best and perturbed
estimates all occupy a single, common direction. Statis-
tically reliable perturbations along this single direction
bracket reality (Figure 1a). In one-dimensional space, sta-
tistical reliability is analogous with bracketing (Figure 3a).
The dynamical evolution of the atmosphere, on the other
hand, manifests in high-dimensional space. As the inde-
pendent dof (Md) increases, random draws from such a
space spread out across more directions, lowering their
expected projection on any single direction to 1/Md,
including that of the error in unperturbed (control) esti-
mates. Such behavior is often referred to as the “curse of
dimensionality” (e.g., Bellman, 1961), which appears to
be the fundamental cause of the failure of any sample,
whether statistically or dynamically generated, in match-
ing the level of Information in unperturbed estimates, or
encompassing reality. As the bulk of perturbation variance
projects into the null space of control error, error in each
perturbed member is necessarily increased, failing to meet
a necessary condition for bracketing.

A contributing factor to the loss of Information in, and
the lack of bracketing by the perturbed members is the
reduction of variability in the magnitude of both error and
perturbations, which results in an even sharper separation
of reality and its samples. Fluctuations in the magnitude
of error (about 0.12 standardized units along X of the black
bars in Figure 9b,c) and perturbations (0.12 along Y and
0.18 along X of the blue points) are greatly reduced com-
pared to the standard deviation of 1 in one dimension. This

behavior is due to the Law of Large Numbers (e.g., Rose &
Smith, 2002). If error in the best estimate (or control anal-
ysis) of a state is assumed to follow an iid normal distribu-
tion then theoretically, the distance of such guesses from
reality follows a chi-squared distribution (black curve in
Figure 1b), and the distance of perturbed states around any
analysis from reality a non-central chi-squared distribu-
tion (blue curve in Figure 1b). The higher the dof, the nar-
rower both of these distributions become. The demonstra-
tion in Figure 1b is for Md=150 dof. Unlike in one dimen-
sion (Figure 1a), all perturbed states in high-dimensional
spaces are further displaced from reality. Figure 1b hence
indicates that the failure of operational, perfect, and simu-
lated ensemble members to match the skill of unperturbed
estimates, or to bracket reality is due to the peculiar geom-
etry of high-dimensional spaces.

Finally, we contrast the time evolution of perturba-
tions that are aligned, or congruent with, vs orthogonal
to the error in the control. Initial perturbations congru-
ent with the control error uniformly reduce or increase
error in the perturbed state over the entire domain. Result-
ing perturbed states lie on a line defined by reality and
the control initial condition. If error in each initial condi-
tion is assumed to grow logistically, the relative differences
between smaller and larger initial errors will be retained
in the forecast phase. Consequently, trajectories started
with initial perturbations congruent with the control error
will remain dynamically congruent in the forecast phase.
Such forecast trajectories necessarily lie on a 2D surface
defined by the trajectories of reality and the control fore-
cast, ever diverging from, and never crossing each other (as
suggested in Figure 5).

Such orderly error behavior is never observed with
real-life ensembles. On the opposite, error curves for
perturbed members evaluated over any subdomain dis-
play an incongruent, crisscrossing nature. This is evi-
dent in Figure 10, where the member that is best/worst
over the NH extratropics in the 12–24-hour range (solid
blue/red lines), for example, performs the worst/best a
few days later (60–120 hours lead time range), respectively
(or at other locales, not shown). This behavior can be
explained by the random nature of initial perturbations
in a high-dimensional space. With negligible projection
on the actual error in the control, such perturbations
improve/degrade the control initial condition in a ran-
dom fashion over different parts of the domain. Model
dynamics transposes the random initial spatial variations
in skill into the time domain. The random fluctuations in
forecast skill seen in Figure 10 hence arise as the influ-
ence of improvements and degradations in initial condi-
tion from different parts of the domain reaches the veri-
fication area. Clearly, ensemble perturbations behave like
random (albeit spatiotemporally correlated) noise. And
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FENG et al. 15

F I G U R E 10 Same as Figure 7a, except error variance of
individual forecasts against the verifying analysis for the single case
initialized at 1200 UTC, 30 December 2017. The three dashed
curves represent the error in the best (bottom, blue), median
(middle, black), and worst member (top, red) at each lead time
separately. The blue and red solid curves show the error variance in
the members best and worst at the 12-hour lead time, respectively.
Light gray curves show the error variance of individual members.

paradoxically, these random fluctuations provide statis-
tical bracketing for single observed variables (Figure 3),
while they fail to dynamically bracket the full state or its
evolution (Figures 7 and 9).

6.3 Nonlinear effects

To avoid the introduction of sampling error, initial per-
turbations are symmetrically arranged around the control
analysis (Equation 5), setting the mean of operational
ensembles equal to the control analysis. What explains the
moderate and large reduction of Information and Noise
in the ensemble mean compared to the control forecast,
respectively? As noted by Gilmour et al. (2001), pertur-
bations with amplitudes small relative to their satura-
tion value develop quasi-linearly, leaving the mean mostly
unaffected. This is reflected in the overlap of the black
(control) and red (ensemble mean) curves in Figure 8b
(Information), and especially in Figure 8c (Noise) in the
0–1-day lead time range.

Noticeable nonlinearities first emerge on the small-
est scales due to the asymmetric evolution of the ampli-
tude and position of affected features (Ancell, 2013). This
results in a deviation of the mean from the control fore-
cast. As nonlinear mixing in the 1–2-days lead time range
is low, Noise removal is minimal; the difference between
the mean and the control forecasts is dominated by the loss
of Information. This is evidenced by the noticeably larger
difference between the black (control) and red (ensemble

mean) curves for forecast Information (Figure 8b), com-
pared to Noise (Figure 8c).

With increasing lead time, the phase and amplitude
of perturbations on the smallest scales become fully ran-
domized. At this stage of full nonlinear mixing, the mean
of a typically sized ensemble removes a significant part
of Noise present in the control forecast on scales with
such fully saturated perturbation amplitudes. Simultane-
ously, error first in the control, then in the perturbed
members also saturates, at which point all forecast Infor-
mation on these small scales is lost. Due to the upscale
propagation of energy, the same perturbation dynamics
is repeated on successively larger scales. On scales with
newly randomized perturbations, Information in the mean
compared to the control forecast is temporarily reduced,
after which a large part of Noise on such scales is removed.
This succession of temporary reduction of Information
and the additive removal of Noise on ever larger scales
explains the increasing–steady–decreasing reduction of
Information in the mean (compare black and red curves
in Figure 8b), and the cumulative removal of Noise com-
pared to the control forecast (compare black and red
curves in Figure 8c), as a function of increasing lead
time.

As perturbation energy moves upscale, the growth, as
well as the overall variance of perturbations shifts to ever
larger scales (cf. Figure 1 of Privé & Errico, 2015). This
results in a general reduction of the independent degrees
of freedom in perturbation dynamics, which explains the
increase in the likelihood that the skill in some mem-
bers over a limited domain rises above that of the con-
trol forecast, as noted earlier in Figure 7 for longer leads
times. Ensembles, however, fail to bracket reality or its
proxy at initial and short lead times even over a sub-
domain of the 500-hPa height over the extratropical NH
(with an estimated dof of 33). So bracketing observed
at later lead times is only statistical, not dynamical in
nature.

The dof of the full dynamics of short-range perturba-
tions resolved by today’s NWP systems is estimated to be
in the range of 150–200 (see Appendix D). Bracketing in
that space, as demonstrated for dof= 150 in Figure 1b, is
even more challenging. Could the addition of more mem-
bers help? The ratio of bracketing, more formally defined
in Appendix E, is a function of dof and ensemble member-
ship. In one dimension, the bracketing ratio with typical
membership is sufficiently close to 1 [(Me− 1)/(Me+1)],
ensuring that most of the time statistically reliable sam-
ples encompass a proxy of reality. In the high-dimensional
space of the full resolved-scale dynamics of atmospheric
circulation the chance of even large-size randomly gen-
erated ensembles encompassing reality, however, is astro-
nomically low (see Figure E1).
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16 FENG et al.

7 CONCLUSIONS

We exploit an orthogonal decomposition of forecast
anomaly from the climatic mean into Information identi-
cal, and Noise orthogonal to the observed anomaly. Gen-
erally, Information about the state of natural systems is
limited. Information is further reduced as forecast vari-
ance in chaotic systems like the atmosphere is gradually
converted into Noise (Figure 6). For decades, statistical
sampling has been successfully applied to assess uncer-
tainty in weather forecasts (Figure 2a). Could forecast
samples be generated dynamically, asked forerunners of
ensemble forecasting. The practice of ensemble forecasting
matured in the 1990s. Initial perturbations are added to the
best estimate of the state, from which alternative scenar-
ios are dynamically projected into the future (Figure 2b).
After statistical calibration, probabilistic and other prod-
ucts derived from ensembles are widely used today, with
demonstrated value.

Ensembles are assumed to (i) encompass the evo-
lution of the real atmosphere (Figure 5); (ii) cap-
ture case-dependent variations in forecast error; and
(iii) provide higher-quality single-value (ensemble mean,
Figure 4) and (iv) probabilistic guidance. With a com-
bination of theoretical and experimental approaches,
these assumptions have been revisited. Using a statisti-
cal analysis, first we found that the divergence of seg-
ments of observed and/or forecast trajectory segments,
and hence error and perturbation dynamics reside in a
high-dimensional (150–200 independent degrees of free-
dom, Appendix D) domain we call the subspace of possible
error. This subspace is contingent on the larger-scale con-
dition of the deterministically evolving atmosphere, which
one may associate with a “case.” Theoretically, sample
points from high-dimensional spaces have negligible pro-
jection in any preselected direction, including the error in
any initial state. Consequently, unlike in one dimension
(Figure 1a), sample points in high dimensions consistently
degrade the quality of the best estimate, and also miss to
encompass reality (Figure 1b).

Information captured by an analysis is determined
by the sophistication of the observing, data assimila-
tion, and modeling systems. Experimental results suggest
that error and perturbations are random draws from the
high-dimensional subspace of possible error (Figure D1).
Error in initial conditions results from specific realiza-
tions of stochastic noise in observations and data assim-
ilation procedures, while perturbations represent alter-
native realizations of possible error that may have real-
ized under different configurations of stochastic noise.
As in real time Information and Noise are inseparable,
numerical forecasts project their sum, the total initial
variance, into the future. What value may the dynamical

generation of forecast samples (i.e., ensembles) via the
deterministic projection of alternative Noise realizations
bring?

An analysis of an operational and a perfect ensem-
ble reveals that as theoretically expected, but contrary to
assumption (i) above, initial perturbations and ensem-
ble forecasts do not contain the state and evolution of
the atmosphere (Figures 9 and 7, respectively). Also as
expected, out to medium range, all members of the oper-
ational and perfect ensembles have larger error and less
Information than that in the unperturbed control forecast.
Unlike in one dimension (Figure 1a), ensemble members
do not provide any scenario that is closer to reality than the
control; ironically, they explore instead different ways that
the control can be degraded (Figure 1b). And importantly,
contrary to assumption (iii), the mean and arguably (iv)
all probabilistic and other products derived from ensem-
bles have less Information than that in the control forecast
(Figure 8b).

Incidentally, an analysis by Hersbach (2000) shows
that variations in the distribution of ensembles do not
even have an effect on commonly used verification met-
rics. While other studies, as an alternative to assumption
(ii), suggest that the low-level correlation found between
case-to-case variations in spread and error may be
explained by each being influenced by the amplitude of
forecast anomalies. In any case, how could random draws
from the subspace of possible error have any predictive
information about the specific realization of error that is
driven by stochastic observational and data assimilation
processes? After all, it is only the subspace of possible
error from which perturbations are also drawn, but not
any specific, stochastically driven realization from it that
is “case”-dependent (on the well-known large-scale condi-
tions).

Our diagnosis indicates that the smaller error in the
mean, a well-known benefit of ensembles, is due to an effi-
cient filtering of Noise (Figure 8c) compared to individual
forecasts. The smoother nature of the median of ensem-
ble distributions is also what explains the lower scores
found in probabilistic forecasts derived from an ensem-
ble vs a control. Unfortunately, nonlinear filtering removes
not only Noise, but some forecast Information as well
(Figure 8b). Interestingly, Information is preserved in the
mean only during the early, linear phase of the evolution
of perturbations where their initial symmetry is still pre-
served and where ensembles are generally considered use-
less. Later, the loss of Information in the mean and other
products amounts to an about 18-hour loss of lead time
in warning about future weather events, or an eight-year
setback in international NWP developments. The signifi-
cance of this is that since Information is a sufficient veri-
fication statistic, any rationally acting user benefits more
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FENG et al. 17

from an unperturbed control than from an ensemble of
forecasts.

Importantly, all behavior observed in operational
ensembles is reproduced with a perfect ensemble. This
confirms that their failure to meet expectations is not
due to methodological shortcomings but lies rather in the
multidimensional and nonlinear nature of atmospheric
dynamics. At a great computational expense, ensembles
recreate the same Information present in the control fore-
cast Me times, albeit at a lower level, while with painstak-
ing accuracy generating Me alternative realizations of
dynamically balanced error of a somewhat larger mag-
nitude. Ensembles lack statistical reliability or any dis-
cernible benefit from case-dependent variations, and have
demonstrably less Information. Should the use of statis-
tical alternatives be reconsidered? Filtering applications
may reduce Noise in the best estimate while prevent-
ing or flexibly controlling the loss of forecast Informa-
tion. With developing machine-learning applications like
recent data-driven weather modeling (Bi et al., 2023; Chen
et al., 2023), spatiotemporal and cross-variable covariances
may also be induced into statistically generated pertur-
bations. All the while calibrated probabilistic and other
products of interest can be derived from statistical samples
of error in past control forecasts, instead of dynamically
generated ensembles.

8 DISCUSSION

8.1 Applicability

Though real-life results in this work are presented only
with a single configuration, the NCEP GEFS, they arise
out of general system characteristics. Specifically, (a) the
phase space of all complex systems is high-dimensional,
in which (b) nonlinear saturation randomizes perturba-
tions on increasingly larger scales, reducing Information
in the entire distribution. Therefore, the main conclusions
of this study may in general be applicable to numerically
created ensembles of high-dimensional multiscale dynam-
ical systems. As an example, finer-scale processes resolved
by increased resolution models are accompanied by higher
degrees of freedom where, compared to synoptic scales,
saturation of error happens faster, resulting in an even ear-
lier onset of nonlinear perturbation behavior compared to
what is found with the NCEP ensemble.

8.2 Continuous approach

Whether forecast samples are represented in a quantized
form of a finite sample (i.e., ensembles), or by a continuous

function (e.g., the Liouville Equations; Ehrendorfer, 2006),
the underlying problems highlighted above remain the
same. The loss of Information and the lack of bracket-
ing therefore may equally affect continuous or quantized
dynamical estimates of forecast uncertainty. In light of the
availability of viable statistical alternatives, Leith’s (1974)
early assessment about ensembles may be applicable to
continuous dynamical approaches as well: “sample sizes
Me>1 will have to be justified on the basis of the detailed
knowledge obtained . . . .”

8.3 Stochastic perturbations

Traditionally, the effect of finer-scale processes on motions
explicitly resolved in numerical models is parameterized
deterministically, conditioned on the resolved scales. More
recently, with the intent of producing stochastic perturba-
tions, random processes are inserted into some parame-
terization schemes. When such perturbations are added to
forecast states during model integration, ensembles may
become more reliable (e.g., Buizza et al., 1999; Berner et al.,
2009), with reduced error in their mean (e.g., Sardesh-
mukh et al., 2023). Just like initial perturbations, these ran-
dom perturbations, however, also increase forecast Noise
in individual members, and reduce Information both in
the members and their mean. From a forecast Information
perspective, one might consider stochastic perturbations
as adding insult to injury sustained from the introduction
of initial perturbations first.

8.4 Data assimilation

Ensemble-derived products used in data assimilation
describe covariances in the behavior of short-range fore-
cast error. These products are based on ensemble forecasts
issued at an earlier time and valid at the time of the anal-
ysis. As such, covariances have no forecast Information
about the future state of the atmosphere; rather, they help
find the best estimate of reality, given available obser-
vational data. Key limitations of ensembles such as the
loss of Information or the lack of bracketing therefore
do not affect data assimilation applications. Interestingly,
the high dimensionality of the space of error discussed in
Sections 5.5 and 6 has long been recognized in the context
of ensemble-based data assimilation (e.g., “localization”
algorithm of Szunyogh et al., 2008).

8.5 New elements

The degraded performance of all short-range perturbed
forecasts compared to the control forecast evaluated over
large areas is not a new finding (Palmer et al., 2006).
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18 FENG et al.

Important implications such as the loss of Information
in all derived products, and the failure of dynamically
generated ensemble forecasts to encompass reality, how-
ever, have not been previously recognized. Neither have
the lower error in the mean or in probabilistic forecasts
derived from ensembles been attributed exclusively to
Noise filtering, nor has the random nature of ensemble
perturbations in the high-dimensional subspace of pos-
sible error, or the significance of the stochastic nature
of error been recognized. Correspondingly, some basic
characteristics of ensembles and the potential viability of
alternative statistical sampling methods have for many
remained elusive.
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ENDNOTES

iDifferences between points in phase space are independent of the
choice of the reference point (or origin) used in defining possible
coordinate systems. Here we adopt a convenient and often-used rep-
resentation of atmospheric states through their anomalies from the
climatic mean (e.g., Chen & Li, 2021).

iiWe note that forecasts from operational prediction systems have a
realistic level of variability, i.e., the overall variance in forecast (F–C)
and verifying proxy for truth (i.e., analysis) anomaly fields (T–C) are
near equal (see, e.g., less than 10% deviation between the solid and
dashed black curves in Figure 8a, introduced later).

iiiWhether a control analysis (and forecast) is produced by a data
assimilation system in practice or not is immaterial. Whether the
primary estimate of the state of nature is in single-value form around
which an ensemble is introduced a posteriori, or an ensemble, the
mean of which necessarily has a smaller error (Leith, 1974, first full
paragraph in the left column of p. 411), a state with a superior esti-
mate either exists, or can be identified, from which deviations of
other estimates can be considered “perturbations.”

ivA degradation in performance was first pointed out by Leith (1974)
in the case of an ideal ensemble formed around reality, in compari-
son with a perfect control forecast.

vWhether an orthogonal basis describing such a space can be deter-
mined in practice or not is irrelevant for our study; we are concerned
only about the number of independent normal iid variates (dof) of
this space.
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APPENDIX A. EXPERIMENTAL DATA

Experimental results in this study are based on opera-
tional analysis and forecast data from the NCEP Global
Ensemble Forecast System (GEFS), initialized twice a
day (0000UTC and 1200UTC) from the period December
1, 2017–February 28, 2018, for a total of 180 cases on a
1◦ × 1◦ latitude–longitude grid, out to 16 days lead time at
12-hour output frequency (Zhou et al., 2017). Note that the
unperturbed control forecast is run at the same resolution
as the perturbed forecasts. Most statistics are computed
over the NH extratropics in the 30◦–65◦ latitude band.
The perturbation methods and numerical model used to
generate the NCEP ensemble are typical of those used at
many other centers.

As reality (or truth) is unknown, true error cannot be
measured in practice. In this study, we use NWP analy-
sis fields as a proxy for truth. The difference between a
forecast and this proxy can be called “perceived” error.
With some assumptions, true error can be estimated based
on perceived error measurements (Peña & Toth, 2014).
Despite quantitative differences at short lead times, the
qualitative behavior of true and perceived error is similar
(Feng et al., 2020). Beyond two days lead time, the bias in
perceived forecast error induced by error in the verifying
analysis field used as a proxy for truth is relatively small.

APPENDIX B. INFORMATION AND NOISE IN
SIGNAL PROCESSING VERSUS WEATHER
FORECASTING

Here we discuss what is common in and different between
Information (I) as defined by Equation (7) and “informa-
tion entropy” or Shannon entropy (SE, Shannon 1948)
as used in information theory, and Noise as defined in
Equation (8) compared with its use in signal processing.
Both Information and SE provide a measure of uncertainty
in our knowledge of a particular event out of all of its pos-
sible outcomes. While SE was introduced in the context
of communication, Information is designed to quantify
knowledge captured in analyzed or forecast states of a nat-
ural system like the atmosphere. Conveniently, I in its stan-
dardized form captures the fraction of forecast variance
identical to the real state.

Noise, either defined by Equation (8) (N) or as used in
signal processing, refers to impediments to accessing infor-
mation. “In signal processing, noise is a general term for
unwanted (and, in general, unknown) modifications that
a signal may suffer during capture, storage, transmission,
processing, or conversion” (Tuzlukov, 2010). Meanwhile,
Noise in the context of forecast states of dynamical systems
refers to dynamically constrained forecast variance that is
unrelated to reality (see Section 4.3.4).

APPENDIX C. ERROR, NOISE, AND INFOR-
MATION

Following Lorenz (1982), we assume that the divergence of
initially nearby segments of a chaotic dynamical system’s
trajectory, and in the absence of model error, true forecast
error (i.e., the difference between a forecast and reality)
follows a logistic curve:

d2
i = R ⋅ c∕

(
e−𝛼⋅i⋅𝛥t + c

)
, (C1)

where c = d2
0∕
(

R − d2
0
)
, d2

0 is the variance of initial error, R
is the range between the lower and upper saturation values
(that is double the climatic variance; Leith, 1974), α is the
exponential growth rate, and t is the time increment.

Error variance (d2
i ) can also be expressed as a function

of Information Ii, that is, the variance of truth missed by,
and Noise variance (Ni) that is included in a forecast (see
the top right-angled triangle in Figure 6):

d2
i =

|Fi − T|2 |T − C|2 = Ni +
(

1 −
√

Ii

)2
. (C2)

For forecast systems with realistic variability, exploit-
ing Equation (9), error variance can be written as a func-
tion of either Noise (not shown) or Information variance
only:

d2
i = 2

(
1 −

√
Ii

)
. (C3)

Considering also Equations (C1) and (9), a rearrange-
ment of Equation (C3) defines the time evolution of Noise
(not shown) and Information (see blue line in Figure C1)
as:

Ii =
(
2 − d2

i
)2∕4. (C4)

(N
)

(d
²)

N

(
)

F I G U R E C1 Schematic depicting the growth of Noise (blue
line, left axis) and the decrease of Information variance (blue line,
right axis) in a forecast characterized by logistically growing
standardized error (black line). For further details, see text.
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APPENDIX D. DEGREES OF FREEDOM

The experiment reported in Figure 9c is repeated with
different values for dof and the frequency distribution
of error amplitudes in perturbed states in the perfect
(Figure 9b) and simulated ensembles are compared using
the Kolmogorov–Smirnov two-sample test (Chakravarti
et al., 1967). Error amplitudes in both the perfect and sim-
ulated ensembles are standardized by the sample-mean
rms error of the control analysis. The best fit is found
at Md = 33 (used in the construction of Figure 9c, see
Figure D1a), with a range of values between 28 and 38
still acceptable at the 5% statistical significance level. To
reduce noise, the test statistic is processed with a five-point
triangular filter before it is plotted as a function of dof
(Figure D1b). The results indicate that the experimental
data in Figure 9b are consistent with the hypothesis that
the global ensemble perturbations form a random sample
in a high-dimensional phase space.

The Md = 33 degrees of freedom (dof) estimated for the
NH 500-hPa extratropical height, of course, assess only a
small part of the full space of atmospheric dynamics at
the resolution of today’s models. Using the statistical eval-
uation described above, the best estimate for the dof of
global 500-hPa height variability is found to be 50. Though
global extratropical 500-hPa height covers a large subspace
of atmospheric dynamics, it does not reflect independent
variations across the entire planetary circulation (Palmer
et al., 2006, see their Appendix). Due to strong dynami-
cal connections across variables, conservatively we expect
an increase with a factor of less than 2 in dof if all inde-
pendent model variables are considered. And due to the

low aspect ratio of the atmospheric fluid at today’s reso-
lution of global models (e.g., Held, 2015), we anticipate
a similarly low (less than a factor of 2) increase in dof
were all levels included. Such considerations suggest that
the dof of the subspace of Information (i.e., initial error
and short-range perturbation dynamics resolved by today’s
operational forecast systems) may be 3–4 times higher than
that of the global 500-hPa height field, in the range of
Moverall

d = 150–200.

APPENDIX E. BRACKETING RATIO IN
MULTIPLE DIMENSIONS

Bracketing ratio FMd,Me is a positively oriented metric,
defined here for multidimensional applications as the rel-
ative frequency of reality (or its proxy) falling within (or
bracketed by) the ensemble cloud in the direction con-
gruent with the error in the control (see Appendix D).
The bracketing ratio is a function of the degrees of free-
dom (Md) and the number of ensemble members (Me).
Note that bracketing ratio FMd,Me (Section 6.3) is an inverse
measure of the ensemble outlier statistic (e.g., Buizza &
Palmer, 1998), generalized for multidimensional applica-
tions, as well as a generalization of the probability of an
ensemble member having an error lower than that in the
control, shown in the table of the Appendix in Palmer
et al. (2006).

For the illustration below, FMd,Me is calculated as
follows. Missed Information in the control and initial
ensemble perturbation vectors d0 and 𝜀0 is given by
(d0,1, d0,2, … , d0,Md ) and (𝜀0,1, 𝜀0,2, … , 𝜀0,Md ), respectively.
Since 𝜀0,i is a random sample of d0,i, and following the

F I G U R E D1 (a) The frequency of error in perturbed initial conditions from the NCEP (perfect setup, blue) and simulated (dof= 33,
red) ensembles. (b) Test statistic for the two-sample Kolmogorov–Smirnov test showing the maximum absolute difference (black open
circles) between the empirical perturbed-state error distribution functions from the perfect and simulated ensembles like those in panel (a).
Values below the red dashed line indicate dof values where the actual and simulated distributions are statistically indistinguishable at the
0.05 significance level.
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F I G U R E E1 Ratio of cases a
simulated ensemble of varying size
brackets reality, as a function of the
independent degrees of freedom (dof;
panel b). Bracketing ratio for dof= 33
and a 20-member ensemble is
highlighted in panels (a) and (c),
respectively.

standardization introduced in Section 5.5, we assume
the elements 𝜀0,i and d0,i both follow independent and
identical standard Gaussian distributions N(0,1). There-
fore, the distribution of projection of the ensemble pertur-
bation 𝜀0 on the analysis error d0 has an expected value
of zero and a variance of 1, also conforming to a Gaussian
distribution N(0,1).

We consider an ensemble with Me members. The pro-
jection of the members onto the direction congruent with
the missed Information divide the probability space of
N(0,1) into Me + 1 intervals. We mark the threshold des-
ignating the upper percentile of 1/(Me + 1) as S. The truth
is bracketed if the Euclidean norm of d0 is smaller than
S. The Euclidean norm of d0 is calculated as

√∑Md
i=1d2

0,i,

where
∑Md

i=1d2
0,i follows the chi-squared distribution 𝜒(Md).

Therefore, the general form of the formula for the bracket-
ing ratio illustrated in Figure E1 is:

FMd,Me = P
(

x < S2)
, (E1)

where x =
∑Md

i=1d2
0,i ∼ 𝜒(Md) and P(⋅) stands for the prob-

ability of x being smaller than S2. For a single variable

(Md= 1), Equation (E1) recovers the inverse of the formula
for the often-used ensemble outlier statistic:

F1,Me = 1 − 2∕(Me + 1). (E2)

As an illustration, Figure E1b displays the expected
value of FMd,Me as a function of the degrees of freedom
(Md) and the number of ensemble members (Me). High-
lighted are marginal values for Md = 33, the estimated
dof of the NH extratropical 500-hPa height field (Figure
E1a), and Me = 20, the membership of the NCEP ensem-
ble over the experimental period (Figure E1c). In sharp
contrast with realistic-size ensembles in low dimensions
(FMd,20 ∼ 1, Figure E1c), even for large ensembles (e.g.,
Me = 200) and for a limited domain like the NH extrat-
ropical 500-hPa height (Md = 33), truth is bracketed only
in one out of about 500 million cases (Figure E1a). This
answers a question Gilmour and Smith (1997) posed in a
broader context: ensembles can capture reality “only in”
but not “even in” low-dimensional systems. In the full
space of resolved atmospheric dynamics (Moverall

d ∼ 175),
truth would be encompassed at an astronomical rate so low
that is computationally directly inaccessible.
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