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A B S T R A C T

Ensemble-based sensitivity analysis (ESA) has been widely applied to identifying and investigating the sources of
forecast uncertainty in tropical cyclone (TC) track. The standard ESA used in most preceding studies involves
calculating the time-lagged covariance of ensemble perturbations by removing the ensemble mean. This method
primarily focuses on the influence of initial errors. However, such studies ignore two critical dimensions of ESA.
One is how ensemble sensitivity is influenced by the varying forecast performance across different ensemble
prediction systems (EPSs). Secondly, the impact of model errors on forecast uncertainties remains unaddressed.
An in-depth examination of these two aspects provides a more comprehensive understanding of the factors
contributing to TC track uncertainties.
This study employed the standard ESA to analyze and compare the sources of uncertainty in the track forecast

of Typhoon In-fa (2021) in three representative operational EPSs. Our findings reveal that the EPS’s specific
performance in ensemble spread markedly influence ensemble sensitivity. We identified that variations in the
shape and location of key synoptic systems, such as the western Pacific subtropical high and monsoon trough,
across ensemble members were notably distinct. These variations played a significant role in shaping the un-
certainty for In-fa’s track forecast within each system. Furthermore, we introduced a modified ESA to better
account for the influence of model errors on TC track uncertainties. The modified ESA, when applied to en-
sembles with substantial systematic deviations, predominantly reflects the impact of model errors on track
forecast inaccuracies, offering a notably different perspective compared to the standard ESA.
Significance statement: Ensemble-based sensitivity analysis (ESA) serves as an effective method for identifying the
origins of forecast uncertainty in tropical cyclone (TC) tracks. Most preceding studies based on the standard ESA
have predominantly concentrated on examining key physical processes within individual ensemble prediction
system (EPS) and the impact of initial condition uncertainties. They often overlook the dependence of the
ensemble sensitivity on the varying forecast performance of EPSs, as well as the impact of model errors on
sensitivity assessment. This study revealed that the ensemble forecasts across different EPSs exhibit different
performance in terms of ensemble spread in the shape and location of primary weather systems. This variability
significantly contributes to the uncertainty in TC track forecasts through diverse processes. Furthermore, this
research introduced a modified ESA, which effectively identifies the impact of model systematic deviations on TC
track forecast errors. This approach along with the standard ESA provide a more comprehensive and nuanced
analysis of the forecast error sensitivity associated with both initial condition and model related uncertainties.

1. Introduction

Tropical cyclones (TCs) present as a significant natural disaster, often

resulting in substantial economic damage and loss of life. To mitigate
these impacts, it is essential to develop accurate predictions of TC tracks,
especially regarding the timing and location of landfall. Over recent
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decades, the accuracy of TC track forecasting has improved substantially
attributed to advancements in observing systems, the refinement of
numerical weather prediction (NWP) models, and the expansion of
computing capabilities. Specifically, the 2-day forecast track errors for
typhoons (TCs occurring in the western North Pacific) have reduced
from over 500 km in the 1980s to roughly 100 km in recent years (Goerss
et al., 2004; Yu et al., 2022; Chen et al., 2023). However, despite these
advancements, some TC cases present complex motions such as looping,
meandering, and stalling that could lead to track forecast errors
extending several hundred kilometers (e.g., Heming et al., 2019; Mag-
nusson et al., 2019; Leonardo and Colle, 2021; Tang et al., 2021).
Therefore, understanding the origins of these substantial track errors
remains a pivotal area of investigation in the field of TC track prediction.
It has long been recognized that TC movement is predominantly

controlled by large-scale environmental wind flow (George and Gray,
1976; Franklin et al., 1996; Sobel and Camargo, 2005; Galarneau and
Davis, 2013; Zhang et al., 2020). The effect of the TC environmental flow
is commonly approximated by the “steering wind,” a concept that refers
to the deep-layer mean wind field, calculated as an average over spec-
ified horizontal areas and vertical levels. Based on a statistical analysis
of observational data, Chan and Gray (1982) found that the steering flow
between 500 and 700 hPa in the mid-troposphere shows the strongest
correlation with typhoon tracks. Subsequent studies (e.g., Holland,
1984; Wu et al., 2011) also focused on identifying the optimal steering
wind but used the average within a slightly different vertical depth, i.e.,
from 850 to 300 hPa. Velden and Leslie (1991) demonstrated the
dependence of the selection of pressure levels on a TC’s intensity and
structure.
Ensemble forecasts, which involve initialized forecasts from slightly

perturbed states, have been widely applied to studying the predictability
of TC tracks. The approach of ensemble-based sensitivity analysis (ESA)
was notably advanced by Torn and Hakim (2008), who demonstrated its
effectiveness in assessing the impacts of small variations in initial con-
ditions on TC predictions. Generally, ESA for TC track predictability is
calculated using the time-lagged ensemble covariance between the
forecasted position of a TC center at a specified lead time and the
prognostic variable fields at preceding times (e.g., Chang et al., 2013; Ito
and Wu, 2013; Torn et al., 2018; Ashcroft et al., 2021; Hazelton et al.,
2023; Nakano et al., 2023).
Specific applications of ESA provide deeper insights into TC track

predictability. For instance, Ito and Wu (2013) applied ESA to the
forecast track uncertainties of typhoons Shanshan (2006) and Dolphin
(2008). Their findings revealed that the most sensitive regions affecting
the TC track were predominantly located in the mid-troposphere,
characterized by a horizontal dipole pattern of vorticity near the TC
center. Similarly, Chang et al. (2013) employed a sensitivity analysis
based on the principal component decomposition of the 50-member
ensemble of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ensemble prediction system (EPS). This study high-
lighted the influential role of an upper-tropospheric trough and ridge in
determining the track uncertainty of a winter storm. Torn et al. (2015)
investigated the sources of the erroneous eastward track prediction of
Hurricane Sandy (2012) using ESA. They concluded that variations in an
upper-tropospheric ridge north of Sandy, associated with moisture
perturbation, may induce the track forecast uncertainty. Extending this
line of research, Torn et al. (2018) examined the sensitivity of the track
forecasts of hurricanes Debby (2012) and Joaquin (2015) in deformation
steering zones. Their analysis, utilizing ECMWF ensemble forecast data,
revealed a close relationship between the position and structure of the
steering flow near the TC (within 500 km) and the forecast track
uncertainty.
Sensitivity analysis methods can be broadly divided into two cate-

gories: the dynamic and ensemble-based techniques. The dynamic ap-
proaches include the adjoint sensitivity analysis such as Singular Vectors
(Diaconescu and Laprise, 2012) and Conditional Nonlinear Optimal
Perturbations (Mu et al., 2003; Duan and Huo, 2016). The other type

termed as ESA stands out due to its proficiency in rapidly and effectively
identifying the origins of uncertainty in TC track forecasts (Zheng et al.,
2013; Torn et al., 2015; Feng et al., 2024). However, it’s notable that the
majority of relevant research, including works by Zhang and Yu (2017);
Huang et al. (2020); Li et al. (2021); Peng et al. (2022b), predominantly
utilizes the ensemble members from a single EPS. This approach
inherently limits the understanding of TC track uncertainty to the spe-
cific model configurations and ensemble initialization schemes of the
chosen EPS. Therefore, the time-lagged ensemble covariance in ESA,
which encapsulates potential physical and dynamic regimes, can vary
substantially across different EPSs (Alaka et al., 2019). However,
comparative studies that evaluate ESA for TC track uncertainty across
multiple EPSs are markedly scarce. Such comparative analyses could
illuminate the nuanced differences in the sources of TC track uncertainty
and elucidate how these differences are interlinked with the setup and
performance of various EPSs.
The calculation of the time-lagged ensemble covariance in standard

ESA simply relies on the differences among parallel ensemble forecasts,
specifically the perturbations from the ensemble mean. This approach
does not account for potential discrepancies between the model’s
ensemble forecasts and actual atmospheric conditions. As a result, the
conclusions drawn from ESA-based studies about the origins of track
uncertainty may not be directly transferable to real-world forecasting
scenarios. In practical forecasts, the uncertainties in the prognostic fields
and TC positions are calculated relative to actual observations, as
opposed to the mean state of the ensemble members. Therefore, it is
important to examine how potential model inaccuracies influence the
uncertainty in forecasted TC tracks and how these influences diverge
from those observed in standard ESA. This investigation could provide a
more comprehensive understanding of the error sources in practical TC
track forecasts. Notably, the impact of model errors on forecast uncer-
tainty has been largely overlooked in prior research.
Typhoon In-fa, a formidable TC, emerged and intensified in the

western North Pacific Ocean in July 2021. In-fa maintained a high in-
tensity, exceeding 30 m s− 1, for several days subsequent to its escalation
to a tropical storm around 1200 UTC on July 18. After making a nearly
right-angled turn from a westward to a northward trajectory, In-fa
reached its peak intensity at approximately 55 m s− 1. Then, In-fa
veered northwestward and made landfall over China’s eastern coast
(see Fig. 1), causing heavy rainfall and strong gales in various coastal
cities. Several major operational forecasting centers encountered chal-
lenges in accurately predicting Typhoon In-fa’s trajectory, with errors
spanning several hundred kilometers (Wang et al., 2022). Specifically,
the European Centre for Medium-Range Weather Forecasts (ECMWF)
presented a 72-h deterministic forecast error of around 270 km. In
comparison, both the regional operational system of China Meteoro-
logical Administration (CMA) and the global operational system of the
U.S. National Centers for Environmental Prediction (NCEP) demon-
strated even larger errors, each exceeding 330 km for the same forecast
duration. These inaccuracies are above the 2021 average global and
regional TC position error of about 300 km across major operational
forecast centers (Chen et al., 2023).
This specific case prompted this study to explore the principal factors

and processes leading to significant inaccuracies in the forecast track.
Different from previous research, this study concentrates on examining
and contrasting the sources of TC track uncertainty across three diverse
EPSs, i.e., the ECMWF (Palmer, 2019), NCEP (Zhou et al., 2022), and
CMA (Peng et al., 2022a). These three operational forecasting centers,
each employing distinct ensemble initialization schemes and NWP
models (see details in Table 1), provide a robust framework for this
comparative analysis. Additionally, this study introduces and applies a
modified ESA that incorporates model errors, enhancing the assessment
of how these errors influence the uncertainty in forecasting TC tracks.
The analysis specifically focuses on two critical phases of TC In-fa’s
trajectory: its westward progression and the subsequent sharp north-
ward turn followed by northwestward movement.

L. Liu et al.
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The remainder of this paper is organized as follows. Section 2 de-
scribes the dataset and the calculation of the ESA used in this study.
Section 3 provides an overview of Typhoon In-fa (2021). In Section 4,
the primary results including the ensemble track forecasts and the
standard and modified ESA for the three operational EPSs are presented.
Finally, the conclusions and a discussion are provided in Section 5.

2. Data and methodology

2.1. Data

The ensemble and control forecast data in this study were from the
operational global forecast products of the ECMWF, NCEP, and CMA,
which are accessible through the THORPEX Interactive Grand Global
Ensemble archive available at https://apps.ecmwf.int/datasets/data/t
igge. The basic information of each of the three operational EPSs
considered in this study is summarized in Table 1. In terms of initial
perturbation generation, the ECMWF and CMA employ a dynamical
perturbation scheme, i.e., singular vectors (Palmer, 2019; Peng et al.,
2022a), whereas NCEP adopts posterior members that are updated by
the ensemble Kalman filter recentered around the control analysis (Zhou
et al., 2022). Operationally, the EPSs of the ECMWF, NCEP, and CMA
consist of 51, 30, and 30 members, respectively. For a fair comparison,
this study considered the same number of ensemble members (N = 30)

for each EPS and interpolated these to the same horizontal resolution of
0.5◦. The 30 ensemble forecast members for the ECMWF were randomly
selected from the total 51 members. The forecast fields of the prognostic
variables from each operational system were all verified against a
reference which was derived by taking the mean state of the control
analyses from the three operational centers. This is to mitigate potential
biases that might arise from utilizing different verification references.
The best track data for verification of the TC track forecasts were
downloaded from the CMA Tropical Cyclone Data Center (https://tc
data.typhoon.org.cn/zjljsjj_zlhq.html).
In this study, two phases in the lifecycle of Typhoon In-fa were

analyzed (see Fig. 1 and Table 2) to elucidate the case dependence of
ESA. The first phase, commencing at 1200 UTC on July 18, 2021, is
characterized by In-fa’s predominantly westward trajectory (refer to
Fig. 1). The second phase began with a notable northward turn of In-fa at
1200 UTC on July 20, 2021 and culminated in its progression toward the
East China Sea (see Fig. 1). Each phase was analyzed with the 120-h
control and ensemble forecasts at 12-h intervals from each operational
center.

2.2. Algorithms of ensemble-based sensitivity analysis

The standard ESA has been well defined in several prior studies (e.g.,
Ancell and Hakim, 2007; Torn and Hakim, 2008; Torn et al., 2018),
which is fundamentally related to the time-lagged cross-variable
ensemble covariance. Generally, the ESA for TC track predictability is to
evaluate the spatiotemporally coherent relationship between the TC
position at a specific forecast lead time and the prognostic variables at
earlier times. This approach facilitates the efficient identification of both
the strength and spatial pattern of physical factors that possibly
contribute to the uncertainty in forecasting the position of a TC. Spe-
cifically, given an ensemble of Nmembers, the sensitivity of the forecast
metric Jt at time t to state variable xi,t− δt at location i and at an earlier
lead time t − δt can be expressed as follows:

∂Jt

∂xi,t− δt
=

cov
(
Jt , xi,t− δt

)

var
(
xi,t− δt

) (1)

where cov( • ) denotes the covariance between two variables, and var( •
) is the variance. Torn and Hakim (2008) stated that the above equation
represents a linear regression where the independent variable is an
analysis grid point and the dependent variable is the forecast metric.
They also pointed out that Jt and xi,t− δt represent perturbations with the
ensemble mean removed. Without incorporating a true reference field,
the impact of model errors on forecast uncertainties cannot be explicitly
addressed. This indicates that the standard ESA primarily accounts for
the forecast error sensitivity associated with initial condition un-
certainties and does not account for the sensitivity rooted in model
errors.
The standard ESA used in our study closely aligns with Eq. (1), with a

notable difference: the variables Jt and xi,t− δt are normalized in the
computation of the standard ESA, following the definition in Zheng et al.
(2013), Chang et al. (2013) and Ancell and Coleman (2022). The algo-
rithm defining the standard ESA in this study is written as follows:

Fig. 1. Observed track and intensity of Typhoon In-fa from the CMA best-track
datasets, with dots and numbers indicating the 12-h interval and date,
respectively. The dotted boxes indicate the periods of the two cases in
this study.

Table 1
Basic information on the ECMWF, NCEP, and CMA ensemble prediction systems.

Ensemble prediction
system

ECMWF NCEP CMA

Initial perturbation
scheme

Singular
vector

Ensemble Kalman
filter

Singular
vector

Model perturbation Yes Yes Yes
Maximum lead time (d) 15 16 15
Daily initialization time
(UTC) 00, 12 00, 06, 12, 18 00, 12

Ensemble size (members) 51 30 30

Table 2
Initial time, forecast lead time, and forecast interval for each case.

Stage Initial time Forecast lead
time (h)

Forecast
interval (h)

Case
1

Westward movement 1200 UTC
July 18, 2021

120 12

Case
2

Sharp turn and
northward movement

1200 UTC
July 20, 2021

120 12
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r
(
Jt , xi,t− δt

)
=

cov
(
Jt , xi,t− δt

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var
(
xi,t− δt

)√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Jt)

√

=

∑N
k=1

(
Jt,k − Jt

)(
xi,t− δt,k − xi,t− δt

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1
(
Jt,k − Jt

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
k=1

(
xi,t− δt,k − xi,t− δt

)2
√ (2)

where Jt and xi,t− δt are the ensemble mean states of Jt and xi,t− δt,
respectively. The primary objective of normalizing variables in ESA is to
mitigate the impact of varying ensemble variance among the three
ensemble systems. The normalization process is essential for enabling a
direct comparison of the standard ESA across the three EPSs.
As shown in Eqs. 1 and 2, the standard ESA is computed with the

ensemble anomalies (or perturbations) from the ensemble mean. It
means the standard ESA is unrelated to the true reference and does not
account for ensemble forecast uncertainties rooted from model-related
errors. In this study, a modified ESA that considers the discrepancy of
ensemble forecasts from the true reference is introduced as follows:

rʹ
(
Jt , xi,t− δt

)
=

∑N
k=1

(
Jt,k − Ja

t
)(

xi,t− δt,k − xa
i,t− δt

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1
(
Jt,k − Ja

t
)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1

(
xi,t− δt,k − xa

i,t− δt

)2
√ (3)

where Ja
t and xa

i,t− δt denote the true reference (generally the analysis
state for a proxy) of variables Jt and xi,t− δt instead of the ensemble mean.
Specifically, Ja

t represents the best track position at time t, and xa
i,t− δt

represents the multi-model analysis fields at time t − δt. To elucidate the
modified ESA, Eq. 3 can be expanded as the following:

r’
(
Jtxi,t− δt

)
=

∑N

k=1

[(
Jt,k − Jt

)
+
(
Jt − Ja

t
)][(

xi,t− δt,k − xi,t− δt
)
+
(

xi,t− δt − xa
i,t− δt

)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1

[(
Jt,k − Jt

)
+
(
Jt − Ja

t
)]2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1

[(
xi,t− δt,k − xi,t− δt

)
+
(

xi,t− δt − xa
i,t− δt

)]2
√

(4)

In Eq. 4, two terms
(
Jt − Ja

t
)
ad

(
xi,t− δt − xa

i,t− δt

)
represent the

ensemble mean error relative to the true reference field. When the
ensemble mean error is relatively minor compared to the ensemble
perturbations, the modified ESA would yield similar results to the
standard ESA. However, if the ensemble mean error is significant, for
example, the ensemble forecasts present remarkable systematic de-
viations from the true reference, the modified ESA would predominantly
show the impact of forecast uncertainties from model-related errors.
It should be noted that the modified ESA is intended as a complement

to the standard ESA. Employing both the standard and modified ESA can
provide a more comprehensive and nuanced analysis of the forecast
error sensitivity associated with initial condition and model related
uncertainties. In addition, because the modified ESA takes the true
reference field into account, it cannot be conducted in real time but is
intended for retrospective analysis. Thus, the modified ESA serves as a
diagnostic tool rather than a predictive tool. In contrast, the standard
ESA can be computed in real-time, making it a potential tool for im-
mediate evaluations, such as during targeted observation experiments
and field campaigns (Ancell and Hakim, 2007; Zack et al., 2010; Limpert
and Houston, 2018; Ancell and Coleman, 2022).
In our application of ESA to TC track predictability below, we follow

the definitions of Jt and xi,t− δt as in various previous studies (Torn et al.,
2018; Ashcroft et al., 2021; Hazelton et al., 2023). Specifically, Jt is
defined as the position of the TC center projected onto the specified
major axis at lead time t. The major axis represents the direction in
which the ensemble TC positions have the largest variability (i.e.,
standard deviation), e.g., as defined by Hamill et al. (2011). This
approach allows the position variability to extend beyond the limita-
tions of the Cartesian coordinate framework, making it particularly

advantageous for cases where the greatest variability spans both zonal
and meridional directions. The orientation of the major axis is inde-
pendently determined at each lead time. The variable xi,t− δt represents a
scalar state variable at location i and lead time t − δt. For a vector var-
iable such as wind, xi,t− δt is its projection onto the major axis.

3. Case overview

Typhoon In-fa, which struck in 2021, was notably destructive and
exhibited a complex trajectory. It maintained a robust intensity over its
unusually long lifespan of nearly ten days in the western North Pacific
before its eventual landfall on China’s eastern coast (Fig. 1). In-fa
developed from a weak tropical depression over the Pacific Ocean,
east of the Philippines, in mid-July. By 1200 UTC on July 17, 2021, the
tropical depression had strengthened to a tropical storm, and the
intensification continued as it navigated westward through the path
between the Western Pacific Subtropical High (WPSH) and the monsoon
trough (MT). The WPSH is depicted by a pink contour in Fig. 2e-h, while
the MT, a critical near-equatorial zone where the southwest and
southeast monsoons converge, is represented by a pink line in Fig. 2i-l.
This convergence zone, as delineated by Ritchie and Holland (1999),
Briegel (2002), and Wu et al. (2012), is a significant factor in the ty-
phoon’s development and trajectory.
On July 22, as Typhoon In-fa neared longitude 125◦E, it exhibited an

abrupt deceleration, followed by a directional shift to the north and
subsequently a predominant northwest trajectory for the remainder of
its lifespan. In-fa made landfall in Zhejiang, an eastern province of
China, at approximately 04:30 UTC on July 25, 2021. The path of
Typhoon In-fa was influenced by a confluence of multiple meteorolog-
ical systems, including the WPSH, the MT, and the concurrent Typhoon
Cempaka, which collectively rendered its trajectory challenging to
predict with precision (Huang et al., 2022; Rao et al., 2022; Xu et al.,
2022). The ensemble forecasts displayed significant variances among
the ECMWF, NCEP, and CMA EPSs (see Figs. 3 and 4). To examine the
case dependence of ESA concerning the uncertainty in the typhoon’s
track, this study focused on two distinct forecast scenarios: the period of
westward movement and the period encompassing the sharp directional
shift and subsequent northwestward progression.

4. Results

4.1. Ensemble track forecasts

In Fig. 3, we present the five-day ensemble (gray lines) and control
(pink lines) forecasts for Typhoon In-fa’s track from the ECMWF, NCEP,
and CMA initialized at 1200 UTC on July 18 (i.e., Case 1), overlain by
the observed typhoon track (red lines). The blue ellipses in Fig. 3 were
derived from a bivariate normal distribution fit, as elaborated by Hamill
et al. (2011), applied to the 96-h ensemble TC positions (blue hollow
circles). The longest and shortest diameters of the ellipse, aligned along
the major (the blue line) and minor axes respectively, represent the
distances of two standard deviations, capturing the maximum and
minimum variability in the ensemble TC positions.
The ensemble forecasts of the three operational EPSs all capture the

overall westward movement of In-fa, yet they exhibit distinct charac-
teristics. Both the ECMWF and NCEP demonstrate comparable perfor-
mance, with their ensemble forecast tracks encompassing the observed
path of In-fa, as indicated by the gray and red lines. Nevertheless, the 96-
h ensemble members of the ECMWF and NCEP present a northwestern
deviation of approximately 200 km from the observed track (cf. the blue
ellipse and the red dot). This deviation likely stems from the members’
accelerated easterly steering wind from 60 to 96 h (see Fig. 6a).
Furthermore, the ECMWF ensemble’s TC position spread at 96 h is
notably greater in the east–west direction (as indicated by the blue line
in Fig. 3a) compared to the north–south direction. In contrast, the spread
of the NCEP ensemble TC positions maintains a relatively uniform

L. Liu et al.
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distribution in both the zonal (east-west) and meridional (north-south)
directions.
In contrast to the ECMWF and NCEP ensembles, the CMA ensemble’s

TC tracks exhibit a notably smaller spread, as well as a significant
eastward deviation of approximately 300 km relative to the observa-
tions. The reduced variability is likely due to an excessively small initial
spread in the TC’s position (Fig. 5a) and the steering flow at the Typhoon
center (Fig. 6a). Moreover, the eastward deviation can be attributed to
the relatively slower easterly steering flow within the CMA ensemble
(Fig. 6a). These findings indicate a substantial systematic deviation in
the CMA EPS when simulating the track of Typhoon In-fa.

Similar to Fig. 3, Fig. 4 shows the ensemble (gray lines) and control
(pink lines) track forecasts for Case 2, initialized at 1200 UTC on July 20,
2021, along with the observed track (red lines). In this particular
instance, Typhoon In-fa exhibited a deceleration in its westward tra-
jectory near 125◦E longitude, subsequently altering its course north-
wards before progressing toward the East China Sea. The northward
shift was broadly replicated in all three EPSs, albeit with notable dis-
crepancies in the timing and the exact location of this directional
change. These discrepancies resulted in significant divergence within
the ensembles for In-fa’s northward path. This is exemplified by the 96-h
ensemble TC positions (blue hollow circles) and the near east–west

Fig. 2. Observed synoptic circulations associated with Typhoon In-fa at (a)–(d) 300 hPa, (e)–(h) 500 hPa, and (i)–(l) 850 hPa at 48-h intervals during July 18–24,
2021. The observation uses the mean state of the control analyses from the three operational systems. Red lines represent Typhoon In-fa’s track in best track data.
Black contours and blue wind barbs represent the geopotential height (unit: gpm) and environmental wind (unit: m s− 1), respectively. Pink contours in (e)–(h)
delineate the western Pacific subtropical high with geopotential height of 5880 gpm; pink lines in (i)–(l) denote the trough line of the monsoon trough. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Ensemble (gray lines) and control (pink lines) forecasts of the track of Typhoon In-fa by the (a) ECMWF, (b) NCEP, and (c) CMA EPSs initialized at 1200 UTC
on July 18, 2021. Blue hollow circles represent the 96-h TC positions of each ensemble member and blue ellipses indicate bivariate normal fits to these positions. Red
lines represent the best track positions. Colored filled circles denote the corresponding 96-h TC positions of the best track (red), control forecast (pink), and ensemble
mean (blue). Blue lines show the major axis of the 96-h ensemble TC positions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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orientation of the major axis (blue lines) of the ellipses. The ensemble
forecasts from the ECMWF and NCEP (gray lines) demonstrated a
considerable spread. This spread not only encompassed the observed
track (red lines) but also highlighted the variability in terms of the
possibility of landfall.
Similar to Fig. 3, the ensemble members of the CMA EPS exhibit a

predominantly anomalous southeastward track relative to the observed
track after their northward turn. This deviation is characterized by a
notably smaller spread (~50 km) compared to the wider spreads
observed in both the ECMWF and NCEP EPSs (~100 km), as illustrated
in Fig. 4c. Therefore, none of the CMA ensemble members suggest a
probable landfall by Typhoon In-fa. The performance of the CMA
ensemble can be attributed to two primary factors: a significant under-
estimation in the initial spread of the TC position, as evidenced in

Fig. 5b, and a positive deviation in the weak easterly steering flow (cf.
pink and black lines in Fig. 6b). This deviation may be linked to model
deficiencies in simulating the environmental fields of In-fa. Our analysis
predominantly focuses on evaluating the impact of these ensemble
forecast performance by various EPSs on the ESA of TC track
uncertainty.
The ensemble mean error and the ensemble spread of the TC track

forecasts from the three operational EPSs were analyzed for the two
specified cases in Fig. 5. In Case 1, the three operational EPSs have
similar ensemble mean track errors in the first 36 h. Beyond this period,
from 48 to 84 h, the ECMWF EPS demonstrated the smallest ensemble
mean track error, averaging approximately 60 km less than those of the
NCEP and CMA EPSs. Additionally, the ECMWF EPS exhibited an
ensemble spread closely matching its ensemble mean error during the

Fig. 4. Same as in Fig. 3 but for Typhoon In-fa in Case 2 initialized at 1200 UTC on July 20, 2021.

Fig. 5. Variation of the ensemble mean track error (colored solid lines) and spread (colored dashed lines) as a function of lead time in (a) Case 1 and (b) Case 2.

Fig. 6. Variation in the zonal component of the steering wind (negative and positive values for easterly and westerly winds, respectively) in the ensemble forecasts as
a function of lead time: (a) Case 1 and (b) Case 2. Colored lines and black lines denote the ensemble mean forecasts and the reference observations, respectively; the
colored vertical bars denote the ensemble spread.
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first 72 h, suggesting superior accuracy in quantifying TC track forecast
errors in this case. In contrast, the NCEP EPS followed with an ensemble
spread about 30% lower than that of the ECMWF. The CMA EPS showed
the lowest ensemble spread of TC track forecasts throughout all lead
times, nearly one-third of the ECMWF’s spread. The significant under-
estimation of ensemble spread in the CMA EPS’s TC track forecasts may
be attributed to the smallest initial spread in both the TC position (see
Fig. 5a) and the environmental flow (see Fig. 6a).
In Case 2, the NCEP EPS overall performs the best in terms of the

ensemble mean track. The ensemble mean track error of the CMA EPS is
comparable to that of the NCEP EPS (cf. pink and blue solid lines in
Fig. 5b) and lower than that of the ECMWF EPS (cf. pink and red solid
lines in Fig. 5b) from 36 to 84 h. However, the ensemble mean track
errors of the CMA EPS significantly exceed those of the NCEP and
ECMWF EPSs beyond 84 h. This can be attributed to the pronounced
eastward and southeastward deviations in the ensemble TC tracks of the
CMA EPS (see Fig. 4c) with the lowest ensemble spread (see dashed lines
in Fig. 5b), especially at later lead times. The NCEP EPS presents the
closest ensemble mean error and the spread of TC tracks in Case 2.
To further address the differences in the forecasting performance of

the three EPSs for TC tracks, we conduct a comparative analysis of the
steering flow, a dynamical indicator for TC movement. In this study, the
steering flow is calculated as the average wind in a 600 km × 600 km
region surrounding the TC center, spanning pressure layers from 850 to
300 hPa as in Chan and Gray (1982) and Akter and Tsuboki (2021). This
analysis focuses on the zonal components of the TC steering flow
(negative and positive values representing easterly and westerly winds,
respectively) in the ensemble members (vertical bars) and their mean
values (lines) for the ECMWF, NCEP, and CMA EPSs as a function of lead
time for Case 1 and Case 2, as illustrated in Fig. 6a and b.
The comparative analysis reveals a significantly smaller initial

spread of the steering wind in the CMA ensemble across the three EPSs
for both cases. This discrepancy likely contributes to the notably smaller
forecast spread of the steering flow in the CMA EPS, which is approxi-
mately half that of the ECMWF and NCEP EPSs throughout all lead

times. This result is consistent with the performance differences in the
TC track spread among the three systems (cf. Figs. 5 and 6). Further-
more, the NCEP and the ECMWF EPSs demonstrate superior accuracy in
capturing the easterly component of the steering wind in Case 1 and
Case 2, respectively, compared to the reference analysis. The CMA EPS
exhibits a significant positive deviation in the overall easterly steering
flow relative to the observations in both cases. This deviation explains
the overall eastward deviation of the TC tracks in the CMA EPS as
illustrated in Figs. 3c and 4c.

4.2. Ensemble sensitivity analysis without model errors

Fig. 7 shows the standard ensemble sensitivity [i.e., r in Eq. (2)] of
the TC center position at the 96-h forecast lead time to the 500-hPa
environmental wind in the forecasts at 24-, 48-, and 72-h lead times
for the three operational EPSs in Case 1. The TC center position and the
environmental wind in the ensembles are all projected onto the major
axis at 96 h (blue straight lines in Fig. 3), along which the ensemble TC
positions have the largest spread. It should be noted that the major axes
of the ECMWF and CMA ensembles in Case 1 are predominantly aligned
in the west–east direction (see Fig. 3a and c). Therefore, the near
north–south major axis of the NCEP ensemble in Case 1 (i.e., Fig. 3b) is
substituted with the mean direction (see the blue straight line in
Fig. 7d–f) of those of the ECMWF and CMA ensembles for projection
purpose. This facilitates a relatively uniform and meaningful compari-
son of the ESA results along a similar axis direction among the three
EPSs.
Fig. 7 shows that the ensemble sensitivity for the individual EPSs

overall exhibits a similar pattern, which notably intensifies with
increasing lead time from 24 to 72 h. This indicates an increased linear
impact of uncertainties in the environmental flow on the uncertainties in
the TC position prediction over shorter lead times. Notably, the high
sensitivities within the three EPSs are mainly concentrated around the
environment (~1000 km) of Typhoon In-fa. These includes areas south
of the WPSH and north of the MT (marked by A and B, respectively), as

Fig. 7. Ensemble sensitivity (shading) of the 96-h TC position to the 500-hPa environmental wind at (a) 24 h, (b) 48 h, and (c) 72 h, projected on the 96-h major axis
(blue lines), for the ECMWF EPS in Case 1. The panels of the middle and lower rows are similar to those of the upper row but for the NCEP and CMA EPSs,
respectively. Stippled regions indicate where the sensitivity is statistically significant at the 95% confidence level. Blue barbs and black contours denote the ensemble
mean wind and the geopotential height at 500 hPa, respectively. Yellow stars represent the ensemble mean position of In-fa. Red contours highlight the geopotential
height of 5880 and 5860 gpm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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well as the area south of the MT (marked by C). This implies that the
WPSH and MT might be the primary weather systems influencing the
forecast uncertainty of the typhoon’s position. Nevertheless, the
ensemble sensitivity reveals distinct patterns for each EPS, highlighting
their differences in how the precise processes of environmental flow
modulate the uncertainty in TC position prediction.
Taking the ensemble sensitivity of the 96-h TC position to the 48-h

environmental flow as an example (i.e., Fig. 7b, e, and h), distinct ESA
patterns are observed for different EPSs. Specifically, the ensemble
forecasts of the ECMWF and CMA EPSs display significantly positive
sensitivity to the southeast of the MT (i.e., C1 in Fig. 7b and C3 in
Fig. 7h), which is much stronger than that of the NCEP EPSs in similar
regions (C2 in Fig. 7e). This positive sensitivity implies a dynamical
process where the position of Typhoon In-fa shifts eastward (westward)
in response to the strengthening (weakening) of the westerly flow south
of the MT. In contrast, the dynamic processes influencing TC position
north of the MT and south of the WPSH display variations across the
three systems, despite an overall similarity in their sensitivity regions.
The sensitive region on the southern side of the WPSH in the 48-h
ensemble of the ECMWF EPS displays a west-positive (A1) and east-
negative (B1) dipole mode (Fig. 7b). Differently, the NCEP ensemble
shows a sole region of positive sensitivity near the southwest of the
WPSH (A2), while the CMA ensemble exhibits a longer and narrower
region of positive sensitivity stretching from the west to the east (A3).
The mechanisms underlying these divergent sensitivities are elucidated
in Fig. 8.
To elucidate the ensemble sensitivity in Fig. 7, Figs. 8(a)-(c) feature a

48-h ensemble spaghetti plot for 500-hPa geopotential height of 5880
and 5860 gpm (gray lines) for individual EPSs, overlaid by their
respective 96-h ensemble TC positions (black dots). The contours of
5880 and 5860 gpm approximately outline the structures of the WPSH
and the MT. Three representative members of each EPS are highlighted,
with the colored lines indicating the 48-h geopotential heights and the
corresponding colored hollow circles marking the 96-h TC positions. It is
important to note that selecting an alternative set of three members
would not fundamentally alter the derived conclusions. Considering the
inherent limitations of spaghetti diagrams, especially in regions with
weaker geopotential height gradients, the placement of contours may
falsely suggest higher variability than actually present, Figs. 8(d)-(e)
also include the spatial distribution of the 30-member standard devia-
tion of the 500-hPa geopotential height field as a supplementary
reference.

As shown in Fig. 7b and e, the TC position uncertainties within the
ECMWF and NCEP ensembles exhibit significantly positive sensitivity to
the environmental flow southwest of theWPSH (see A1 and A2 in Fig. 7).
This sensitivity is closely related to the east-west positional displace-
ment of the WPSH among the ensemble members (cf. pink, red, and blue
solid contours at A1 and A2 in Fig. 8). Specifically, an eastward shift in
the western boundary of the WPSH correlates with a weakening of the
easterly environmental flow in the southwest of the WPSH near A1 and
A2, while a westward shift correlates with a strengthening of this flow.
These variations in flow intensity directly cause corresponding eastward
or westward shifts in the TC position observed 48 h later (see the solid
contours and hollow circles), demonstrating positive sensitivity.
Compared to the ECMWF and NCEP ensembles, the CMA ensemble

(Fig. 8c) demonstrates a closer resemblance in depicting the features of
the WPSH. This is evidenced by a notably smaller spread in the 500-hPa
geopotential height near area A3, when contrasted with the spread near
areas A1 and A2 (cf. Fig. 8f and Figs. 8d, 8e). As a result, unlike the
ECMWF and NCEP ensembles, the CMA ensemble uniquely exhibits a
pronounced and elongated east–west extension of high positive sensi-
tivity along the southern boundary of the WPSH (see A3 in Fig. 7h).
Furthermore, the center of maximum positive sensitivity within the
CMA ensemble is located further eastward (cf. A3 and A1, A2 in Fig. 7).
This suggests that, for the CMA ensemble, the TC positional uncertainty
might partially arise from variations in the strength of the easterly
environmental wind on the southern flank of the WPSH in addition to
the effect of the positional uncertainty of the WPSH. Additionally, there
is a region of negative sensitivity (identified as B1 in Fig. 7b) for the
ECMWF ensemble to the northeast of the TC, situated between the
WPSH and the MT. This feature is absent in both the NCEP and CMA
ensembles. This negative sensitivity could be related to the positional
deviations of the eastern boundary of the MT among the members of the
ECMWF ensemble (Fig. 8a). In contrast to the ECMWF ensemble, the
NCEP ensemble displays more significant variations in both the position
and morphology of the MT, as exemplified by the split and integrated
structure of the MT shown in blue and red, respectively (Fig. 8b). This
distinction is further underscored by the larger ensemble spread of the
NCEP EPS than that of the ECMWF, particularly in the vicinity of region
B1 (cf. Fig. 8e and 8d). Such variability in the NCEP ensemble could
possibly weaken the overall linear impact of the environmental flow
associated with the MT on the TC position (see Fig. 7).
The analysis of ensemble predictions from three different EPSs re-

veals a notably positive sensitivity in the southeastern region of the MT

Fig. 8. (a)-(c): Ensemble spaghetti plot for 500-hPa geopotential height of 5880 and 5860 gpm (gray contours) at 48 h for the three EPSs. Black dots represent their
respective 96-h ensemble TC positions. Colored contours and hollow circles highlight the geopotential height and TC positions of three members in each EPS. (d)-(f):
The ensemble spread of the 500 hPa geopotential height field at 48 h for the three EPSs.
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(C1 in Fig. 7b, C2 in Fig. 7e, and C3 in Fig. 7h). This sensitivity indicates
that the prevalent westerly winds in this region (see Fig. 6) tend to slow
the westward movement of the TC. Noticeably, the ensemble sensitivity
in this area is much weaker for the NCEP EPS than for the ECMWF and
CMA EPSs (cf. C1, C3, and C2 in Fig. 7). This discrepancy could be
attributed to the more pronounced deviations in the position and the
shape of the MT in the NCEP ensemble, relative to the other two en-
sembles (cf. C1, C2, and C3 in Fig. 8a-c, respectively), as evidenced by
their respective ensemble spread (see Fig. 8d-f). Such deviations intro-
duce a more complex and nonlinear interaction with the MT, affecting
the TC’s trajectory. The variance in the performance of these EPSs un-
derscores the critical role of ensemble characteristics in determining
how the environmental flow influences TC track uncertainty, as revealed
by the ESA. It highlights how ensemble spread in the representation of
large-scale synoptic systems can differentially influence the un-
certainties in TC position.
Similar to Fig. 7, Fig. 9 shows the ensemble sensitivity of the 96-h TC

position to the environmental flow from 24 to 72 h in Case 2. Consistent
with Case 1, the ensemble correlation intensifies as the lagged time
decreases. Notably, the ensemble sensitivity linked to the WPSH at
earlier lead times (e.g., 24 h) is markedly less pronounced in Case 2
compared to Case 1. The ensemble correlation adjacent to the southern
boundary of the WPSH in Case 2 ranges between − 0.3 and 0.3 at 24 and
48 h across all three EPSs, which contrasts with the higher correlation in
Case 1. This is possibly related to the significant evolution of the WPSH
in terms of shape and size as exemplified by the 5880 gpm contour
highlighted in red. Such changes may exert a stronger nonlinear impact
of the WPSH on the TC’s trajectory. The large uncertainties in the TC’s
northward turn and subsequent path (refer to Fig. 3) could be associated
with the rapid diminution and eastward movement of theWPSH from 24
to 72 h. In Case 2, the areas of high sensitivities predominantly located
near the MT to the east of typhoon In-fa (marked by B), similar to Case 1
(see Fig. 7). This is probably attributable to the relatively stable struc-
ture and the maintenance of the MT during the evolution of In-fa.
Fig. 10 is the same as Fig. 8 but for Case 2. Overall, the ensemble

diversity of the ECMWF and NCEP EPSs is larger than that of the CMA
EPS, as evidenced by the detailed analysis of the spaghetti diagrams
(Fig. 10a-c) and the ensemble spread distribution (Fig. 10d-f). These
findings align with the observations in Fig. 8. The region of negative
sensitivity at 48 h, identified in the south of the WPSH for the ECMWF
ensemble (see A1 in Fig. 9b), could be attributed to the variances in the
longitudinal positioning of the WPSH across the ensembles (see A1 in
Fig. 10a). The structure of the 500-hPa geopotential height near the east
of theMT shows greater diversity in the NCEP ensemble compared to the
ECMWF and CMA ensembles (cf. B2 and B1, B3 in Fig. 10). This may
account for the relatively lower positive ensemble correlation in the
NCEP ensemble (cf. B2 in Fig. 9e, B1 in Fig. 9b, B3 in Fig. 9h).

4.3. Ensemble sensitivity analysis with model errors

Errors in ensemble forecasts, verified against the truth (generally
using the analysis state as a proxy), are jointly contributed by initial
condition errors and model-related errors. However, the standard ESA
does not account for the effect of model errors because the perturbations
of the physical variables are computed relative to the ensemble mean
state (Ancell and Hakim, 2007; Torn and Hakim, 2008). In this study, we
propose a modified ESA that considers the combined effects of initial
and model-related errors on TC track forecast errors. This is achieved by
calculating the deviations of ensemble forecasts from observations (or
analysis), rather than from the ensemble mean (see Eq. 3). According to
Eq. 3, if there are no errors in the ensemble mean forecasts of synoptic
variables (i.e., Jt − Ja

t = 0) and TC positions (i.e., xi,t− δt − xa
i,t− δt = 0), the

modified ESA would be equivalent to the standard ESA. It should be
emphasized that the modified ESA is not designed to replace the stan-
dard ESA, but rather to complement it. Employing both the standard and
modified ESA can provide a more comprehensive and nuanced analysis
of forecast error sensitivity associated with initial condition and model-
related uncertainties.
Fig. 11 shows the modified ESA of the TC position forecasts at a 96-h

lead time in relation to forecast errors in the 72-h environmental flow

Fig. 9. Same as in Fig. 7 but for Case 2.
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averaged between 850 and 300 hPa for the three EPSs in both cases. In
the modified ESA, the environmental flow and the TC’s center positions
are projected onto the same major axis, consistent with the approach in
Figs. 7 and 9. The reference for the environmental flow uses the mean
state of the control analyses from the three operational centers, while
the TC center positions are compared against the best track data. The
modified ESA for other lead times produced qualitatively similar results
and thus are not shown. It is noticeable that the modified ESA presents
different results from the standard ESA for each EPS, primarily due to
the use of different reference states in the ESA calculation. In both cases,
the modified and standard ESA fields of the ECMWF ensemble exhibit a
high degree of similarity, with the highest spatial correlation of nearly
0.7 (cf. Figs. 11a and 7c, Figs. 11d and 9c). This is mainly explained by
the fact that the ensemble spread of the environmental wind for the
ECMWF EPS is considerably larger than the absolute error of the
ensemble mean in both cases, as indicated by Fig. 13a and d. In such a
situation, according to Eq. 4, the terms associated with the ensemble
covariance of variable perturbations [i.e.,

(
Jt,k − Jt

)
and

(
xi,t− δt,k − xi,t− δt

)
] play a more important role in determining the

modified ESA, resulting in a performance more similar to the standard
ESA. These results also suggest a relatively smaller systematic deviation
of the environmental flow and TC position in the ECMWF ensemble
forecasts from the observation reference.
The similarity between the modified and standard ESA is followed by

the NCEP ensemble with a spatial correlation of approximately 0.4 in
Case 1 and 0.6 in Case 2. In contrast, the spatial correlation for the CMA
ensemble is below 0.2 in Case 1 and approximately 0.4 in Case 2.
Moreover, the modified ESA applied to the CMA ensemble demonstrates
a notably higher sensitivity and much sharper gradients between posi-
tive and negative sensitivities compared to the results of the standard
ESA (cf. Figs. 11c and 7i, Figs. 11f and 9i). This is attributed to the much
larger model systematic deviation in the CMA ensemble than in other
ensembles in these two cases, as detailed in Figs. 12 and 13.
To explain the differences in the results of the modified ESA across

the three EPSs in Fig. 11, Fig. 12 shows the ensemble forecasts (gray
contours) of 500-hPa geopotential height at the 72-h lead time, overlain
by the ensemble mean (blue) and observation analysis (red) at the same
lead time for the individual EPSs. Notably, the 72-h ensemble mean

Fig. 10. Same as in Fig. 8 but for Case 2.

Fig. 11. Modified ESA (shading) of the TC position at 96 h to the 72-h environmental flow projected on the 96-h major axis (blue lines) for the three EPSs in both
cases. Blue barbs and contours denote the ensemble mean wind and 500-hPa geopotential height, respectively. Yellow stars represent the ensemble-mean positions of
In-fa. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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forecasts of the 500-hPa geopotential height of the ECMWF EPS exhibit
greater resemblance to the reference observations compared to the
forecasts from the NCEP and CMA systems in both cases, with a lower
root mean square error (9.73 vs. 14.73 and 12.56 gpm in case 1; 11.96
vs. 18.1 and 13.41 gpm in case 2). This is probably associated with the
appropriate spread in the ECMWF ensembles, in terms of the shape and
the position of synoptic systems such as the WPSH and MT. Such a
spread facilitates more effective sampling or covering of the true state
within the ensemble distribution. The ensemble members of the NCEP
display a spread comparable in magnitude to that of the members of the
ECMWF. However, the NCEP ensemble members display notably lower
similarity to the observations in terms of the shape of the environmental
flow compared to the ECMWF ensemble members. This discrepancy
might explain the relatively reduced correlation between the modified
and standard ESAs for the NCEP ensemble (see details in Fig. 11). In
contrast, for the CMA ensemble, the observations fall outside of the

ensemble forecast distribution in both cases (see areas highlighted by
pink arrows). This phenomenon is attributed to the underestimation of
the ensemble spread (see Figs. 6 and 13). As a result, the TC position
forecasts of the CMA ensemble also exhibit the smallest spread across the
three EPSs (see Fig. 12c and f).
As indicated by Eq. 4, the performance of the modified ESA is closely

related to the relative magnitudes of ensemble perturbations versus
ensemble mean error. Therefore, Fig. 13 shows the spatial distribution of
the ratio between the ensemble spread and the ensemble mean error
magnitude for the 72-h environmental wind. To align with preceding
results, the environmental winds are represented by the component of
the 300–850 hPa averaged wind projected on the major axis of the
ensemble TC positions for the individual ensembles in both cases. In
both cases, most regions (over 70%) for the ECMWF and NCEP EPSs
have a ratio exceeding 1.0, indicating relatively smaller systematic
ensemble deviations in comparison to ensemble perturbations. In

Fig. 12. Ensemble spaghetti plot for 500-hPa geopotential height of 5880 gpm and 5860 gpm (gray contours) at 72 h for the three EPSs overlain by the ensemble
mean (blue contours) and observation analysis (red contours). Red and blue hollow circles represent the 96-h ensemble mean and best track TC positions,
respectively; black dots are the 96-h ensemble TC positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. Spread–error ratio of the environmental flow projected on the major axis for the 72-h ensemble forecasts of the three EPSs in both cases. The spread–error
ratio of 1 is highlighted by yellow contour. Blue contours represent modified ESA of the TC position at 96 h to the 72-h environmental flow projected on the 96-h
major axis. Black stars represent the 72-h ensemble mean TC positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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contrast, the spread–error ratio of the CMA ensemble is overall consid-
erably lower than that of the ECMWF and NCEP EPSs, with values below
0.4 in almost 80% of the regions. This suggests that the term associated
with the ensemble mean errors would predominantly determine the
performance of the modified ESA for the CMA ensemble. This was evi-
denced by the result that the spatial distribution of the spread–error
ratio of the CMA ensemble shows a notable correlation with that of the
modified ESA (cf. shadings and blue contours in Fig. 12c and f). In other
words, the smaller spread–error ratios correspond to higher modified
ensemble sensitivity, suggesting that the high sensitivity in the modified
ESA for the CMA ensemble is primarily attributable to the large model
systematic deviations in the In-fa case.

5. Conclusions and discussion

Understanding the origins of uncertainty in TC track forecasts,
especially in cases with significant track forecast errors, is imperative.
The ESA has been widely applied as a practical and effective tool for
investigating the determinants that contribute to uncertainties in TC
track forecasting. Nonetheless, the majority of existing research has
primarily depended on a single EPS. Within the framework of the
standard ESA, perturbations are calculated relative to the ensemble
mean to estimate the ensemble sensitivity (or covariances). This meth-
odology, however, fails to account for the impact of both the configu-
rations and performance of different EPSs, as well as model errors on the
ESA. This constrains a more comprehensive understanding of the factors
influencing uncertainty in TC track forecasts.
This research employed the ESA to explore the dynamic factors and

processes that contribute to uncertainty in TC track forecasts. To address
the dependence of the ensemble sensitivity on the performance of
ensemble forecasts, ensemble forecast data from three operational
forecasting centers, i.e., the ECMWF, NCEP, and CMA, were utilized. In
addition to the standard ESA approach commonly used in prior studies,
this study introduced a novel modified ESA algorithm. This algorithm
calculates the deviations of ensemble variables in relation to the true
reference (typically the analysis state), rather than the ensemble mean
as is customary in the standard ESA. This modification allows for a more
comprehensive assessment of uncertainty sources in TC positions, taking
into account not only initial errors but also model inaccuracies. The
study involved a comparative analysis of the outcomes derived from
both the modified and standard ESA methods. The case of Typhoon In-fa
was selected due to its notably large forecast track errors, and two
specific stages during its lifetime were investigated.
The main conclusions derived from the study are summarized in the

following.

(1) The accuracy of the ensemble mean forecast for TC tracks is
overall comparable across the three operational systems. How-
ever, the CMA ensemble presents notably lower spread of the TC
track and environmental flow than those of ECMWF and NCEP
ensembles through all lead times in both cases.

(2) The standard ESA based on the three operational ensemble sys-
tems consistently indicate that the WPSH to the north and the MT
to the south of Typhoon In-fa are the primary weather systems
that contribute to the uncertainty in the typhoon’s position.
However, due to varying degrees of ensemble spread (or di-
versity) among these systems, distinct differences in the results of
the standard ESA are observed. In the early lead times of the
ECMWF ensembles, the WPSH and MT exhibit similar patterns
with notable positional deviations, which partially account the
later uncertainties in TC track. In contrast, the CMA ensemble
display a significantly lower spread in both the position and
structure of the WPSH and MT, leading to a scenario where the
typhoon’s positional uncertainty is primarily ascribed to varia-
tions in the strength of the environmental flow. The NCEP
ensemble demonstrates more pronounced nonlinear differences

in the features of environmental fields compared to the ECMWF
and CMA ensembles. This results in a comparatively weaker
overall sensitivity of the NCEP ensemble to the variation of these
features. Therefore, while all three operational ensemble systems
identify the WPSH and MT as key factors influencing the uncer-
tainty in the typhoon’s trajectory, their varying ensemble spreads
and sensitivities lead to different assessments of these influences.

(3) The ensemble results from the ECMWF demonstrates the highest
consistency between the modified and standard ESA, surpassing
those of the NCEP and the CMA ensembles. The performance of the
ECMWF EPS can be primarily attributed to its significantly lower
ensemble mean error of the TC track and environmental flow
compared to their ensemble spread. In contrast, the modified ESA
of the CMA ensemble exhibits the most pronounced differences
from the standard ESA. Detailed analysis of the spread–error ratio
indicates that the modified ensemble sensitivity of the CMAmainly
reflects the relationship between the model systematic deviations
of the environmental flow and TC positions.

Our study systematically examined the influence of ensemble fore-
cast performance on the ESA results by comparing outcomes derived
from various EPSs. This study underscores the importance of EPS se-
lection when using ESA to discern the sources of forecast uncertainty. It
is imperative for researchers and forecasters to carefully assess the
performance of different EPSs, considering their appropriateness for
specific research objectives or operational applications. Additionally,
our findings emphasize the persistent need for an enhanced represen-
tation of the environmental flow in TC models. Advancements in
parameterization schemes and physical processes related to the envi-
ronmental flow could reduce model biases and increase the represen-
tativeness of ensemble members, consequently refining the precision of
TC track predictions.
In this study, we introduced a novel approach by modifying ESA to

incorporate model errors alongside initial errors. This methodology as-
sists in evaluating the impact of model-related errors on forecast error
sensitivities and aids in the practical applications of ESA-derived find-
ings. However, it is crucial to note that the modified ESA cannot be
implemented in real-time, as it relies on the availability of verifying
analysis for the computation of forecast errors. Furthermore, to extract
meaningful insights, the results derived from the modified ESA must be
compared and analyzed against those obtained from the standard ESA.
The modified ESA serves as a tool for in-depth post-analysis and diag-
nostic studies. Further research could explore quantitative expressions
and assessments of the impact of model errors, as well as the associated
dynamic processes. For instance, it is possible to consider model errors
in ESA by including the model error covariance matrix in the multi-
variate ESA (Hacker and Lei, 2015; Ren et al., 2019). Another approach
is to adopt optimization algorithms to identify the model error structure
that has the most significant impact on forecast errors (e.g., Duan et al.,
2022; Zhang et al., 2023). Such advancements could lead to significant
improvements in the accuracy and reliability of forecast uncertainty
assessments. Additionally, exploring the influence of ensemble data
assimilation techniques on ESA, such as various perturbation methods,
could further enhance our understanding.
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