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Traditional ensemble forecasting based on numerical weather prediction (NWP) models, is
constrained by the need for massive computational resources, resulting in limited ensemble sizes.
Although emerging artificial intelligence (AI)-based weather models offer high forecast accuracy and
improved computational efficiency, they still face considerable challenges in ensemble forecasting
applications, due to the unclear error growth dynamic and the lack of suitable ensemblemethods inAI-
basedmodels. In this study, we propose a fast, physics-constrained perturbation scheme through the
self-evolution dynamics of an AI-based weather model for ensemble forecasting of tropical cyclones
(TCs). These initial perturbations are conditioned on specific amplitude and spatial characteristics,
exhibiting physically reasonable dynamical growth and spatial covariance. Based on this perturbation
scheme, the TC track ensemble forecasts within the AI-based model significantly outperform those
from the EuropeanCentre for Medium-RangeWeather Forecasts (ECMWF) for both deterministic and
probabilistic metrics. Notably, we conduct TC track forecasts with 2000 members for the first time,
achieving further enhanced forecast skills in probability distribution and extreme scenarios of TC
movement.

Tropical cyclones (TCs) are among the most destructive weather phe-
nomena impacting human lives and property in tropical regions. TCs can
causemultiple disasters, such aswindgusts, heavy rainfall, and stormsurges.
Therefore, enhancing predictive capabilities for TCs, especially their tracks,
is crucial for mitigating related damages1,2. Previous research indicates that
TC movement is influenced by complex, multi-scale factors, including
large-scale synoptic systems3,4, vortex structure5,6, sea surface temperature7,8,
and cloud convection effects9. These multi-scale factors introduce sig-
nificant uncertainties in predicting TC tracks10,11. A deterministic forecast
provides only one possible future state of a TC. In contrast, ensemble
forecasts, which comprise a set of varied predictions, can offer probabilistic
information about future states and help estimate forecast uncertainty12.
Thus, ensemble forecasting has emerged as an effective method for
improving the accuracy of TC track predictions13–15.

Major operational forecast centers worldwide have developed their
own ensemble prediction systems (EPS) using global or regional numerical
weather prediction (NWP) models16–19, which are crucial for providing
predictions for TCs. Advances in observing systems, data assimilation,
ensemble generation schemes, and NWP model performance have con-
sistently improved the accuracy of these EPSs20,21. However, computational
costs impose significant limitations, restricting operational EPSs to a limited
number of ensemble members, typically ranging from 10 to 50. Given that
this range is significantly lower than the degrees of freedom inNWPmodels
(generally on the order of 108), these systems can only sample a subspace of
the atmospheric variable phase space. This restriction may lead to sub-
optimal performance in representing the probability distribution of vari-
ables and in quantifying forecast uncertainties22,23. Despite the urgent
operational need to develop higher-resolution NWP models for better
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resolving extreme weather events, significantly increasing the number of
ensemble members remains a formidable challenge in operational settings.

In recent years, artificial intelligence (AI) technology has advanced
rapidly and has been widely applied to meteorological forecasting24,25, pro-
viding a swift and effective alternative to traditional NWP26. AI-based
weather forecast models are developed by training on the historical long-
range observations of three-dimensional atmospheric variables, typically
using the fifth-generation ECMWF reanalysis (ERA5) data. This process
employs a machine learning (ML) framework, mostly based on transfor-
mers. Leveraging graphics processing unit (GPU) acceleration, these data-
drivenmodels can produce 15-day global weather forecasts within seconds,
achieving speeds over 10,000 times faster than those of traditionalNWP27. A
significant milestone was reached with the development of the Pangu
model27, which was the first to demonstrate overall more accuratemedium-
range forecasts than the most advanced NWP model, the Integrated Fore-
cast System (IFS) of the ECMWF. Following this, a series of AI weather
models with higher accuracy emerged, including GraphCast28, FuXi29, and
FengWu30, each utilizing an encoder-decoder framework but with distinct
architectures. Notably, some of these data-driven models have been shown
to provide more accurate deterministic TC track forecasts on average than
the IFS27,28. Given their superior forecasting skill, significantly lower com-
putational cost, and faster processing speed, it is worthwhile to explore the
possibility of generating thousands of TC ensemble forecasts and their
potential benefits for TC predictions, a feat that is currently unfeasible with
traditional NWP frameworks.

The core principle of traditional ensemble forecasting, based on the
NWP model, lies in sampling the uncertainties inherent in forecasts,
including those caused by initial and model uncertainties31,32. Although
major operational EPSs employ distinct schemes for generating these per-
turbations in initial analyses and numerical models, their underlying
principles align: to identify and integrate key sources of uncertainties33,34.
Thesephysically constrainedperturbations aim to improve theperformance
of the evolvingperturbations in capturing forecast errors, therebyproducing
more representative ensemble forecastmembers thatmore accurately reflect
the true states of the atmosphere16,17.

In contrast to well-established traditional EPSs, AI-based ensemble
forecasting remains in its early stages. A fundamental challenge in this field
is the limited understanding of the dynamic characteristics of data-driven
models. A few studies, such as those by Bi et al.27 and Chen et al.29, have
introduced randomPerlin (Perlin noise is a type of gradient noise developed
byKenPerlin in 1983. It hasmany applications, includingbut not limited to:
procedurally generating terrain, applying pseudo-random changes to a
variable, and assisting in the creation of image textures) noise into the initial
conditions of data-driven models for ensemble generation. Although their
ensemble mean forecasts exhibit lower root-mean-square errors (RMSE)
compared to the control forecasts, they did not thoroughly investigate the
spatial characteristics and dynamic evolution of ensemble perturbations.
Moreover, the randomly generated Perlin noise lacks flow-dependent
properties, which has been identified as detrimental to the performance of
ensemble forecasting12,35,36. Other studies have explored the application of
classical dynamically generated perturbations to AI models. For example,
Brenowitz et. al.37 suggested that lag forecasts could serve as a practical
benchmark for AI weather models. Scher and Messori38 and Bulte et al.39

tested the singular vector and Gaussian noise in their quantification of AI
forecast uncertainties. Although some of these approaches reported com-
petitive results for ensemble mean forecasts compared to operational
forecasts, the growth of perturbations was rarely studied, resulting in the
empirical design of ensemblemethods andflawed results formetrics such as
ensemble spread.

Researchers have increasingly recognized the importance of analyzing
the perturbation growth and physical consistency in AI models. Selz and
Craig40 explored the dynamic sensitivity of the Pangu model to initial per-
turbations. They highlighted that data-driven models might not effectively
capture the upscale evolution of small-scale perturbations, most often
referred to as the “butterfly effect”. Bonavita41 analyzed the physical balances

and spectral characteristics of forecasts fromdata-drivenmodels.He argued
that these models may lack physical consistency across variables and
struggle to simulate mesoscale systems. These findings collectively imply
that adapting traditional perturbation initialization schemes to AI weather
models might be challenging.

In addition to traditional approaches that perturb initial conditions for
AI ensemble forecasting, recent studies have incorporated advanced ML
algorithms into ensemble forecasting. Zhong et al.42 constructed a varia-
tional autoencoder scheme that transforms forecast data at each iterative
step into a Gaussian distribution, with the continuous ranked probability
score (CRPS) as a constraint in the loss function. Lang et al.43 developed the
AIFS-CRPS ensemble model as a variant of the deterministic AIFS system,
utilizing CRPS as its loss function. Other studies adopted generative tech-
niques, such as the diffusion models, which start with a pattern of random
noise and iteratively refine this noise into coherent images. For instance,
Price et al.44 developed GenCast, a diffusion model that generates ensemble
forecasts by sampling from a joint probability distribution of potential
weather scenarios across space and time. Similarly, Li et al.45 employed a
diffusion model in their Scalable Ensemble Envelope Diffusion Sampler
(SEEDS), which generates large ensembles based on two members of the
Global Ensemble Forecast System at the National Centers for Environ-
mental Prediction (NCEP). These models have shown improved ensemble
forecast skill scores in certainmetrics compared to the operational ensemble
forecasts at ECMWF. However, ensemble members and perturbations in
these AI-driven models are generated within hidden layers of neural net-
works, making it challenging to explicitly manifest and diagnose the char-
acteristics, evolution, and covariances of the ensemble forecast
perturbations, thereby limiting a comprehensive evaluation of these AI-
driven ensemble prediction systems.

The focus of this study is initial uncertainty and their temporal evo-
lutionwithinAImodels. Based on diagnostics of error growth dynamics, we
developed an ensemble forecast scheme with one of the most advanced AI
models for effective TC track ensemble forecasts. Our innovative attempt
superimposes 3Dperturbationswith flowdependence, physical constraints,
and finely tunedmagnitudes onto the initial conditions of the AI model for
perturbed forecasts. Detailed diagnostics reveal that these initial perturba-
tions, unlike randomly distributed small-amplitude initial perturbations,
exhibit reasonable dynamic growth properties within the AI model, similar
to those in NWP models. Specifically, the short-range ensemble perturba-
tion covariance produced by our scheme exhibits similarity to those from
the ensemble forecasts of ECMWF. As a result, our AI-based TC track
ensemble forecasts significantly outperform those of ECMWF in terms of
ensemble mean track error, spread-skill ratio (SSR), and CRPS using the
same ensemble size of 50. Furthermore, our results demonstrate enhanced
TC track forecasts when the ensemble size is increased to 2000, which has
never been tested in prior studies.

Results
Perturbation growth in the IFS and FuXi models
It is crucial to understand amodel’s error growthdynamic before generating
appropriate perturbations for it46. This holds particular significance for AI
weather models, which are derived from data training rather than the
explicit application of atmospheric physics laws. To compare the error
growth dynamics between the IFS and FuXi models, Fig. 1 illustrates their
perturbation growth rates within 72-h lead times as a function of the
magnitude of initial perturbations, using the lagged forecast method (see
more details in the “Calculation of perturbation growth rate” section). The
results for other lead times are qualitatively similar (see Supplementary Fig.
1). This analysis covers three defined domains: the western North Pacific
(WNP), the North Atlantic (NA), and the Northern Hemisphere (NH), to
provide a more comprehensive understanding. It is noted that the magni-
tudeof initial perturbations is adjustedby settingdifferent lagged intervals of
forecasts (iΔt), leading to differences in initial perturbation magnitudes
between the IFS and FuXi models given a certain iΔt. For the FuXi model,
perturbation growth is also analyzed for initial Gaussian-distributed noise,
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which has the same statistical mean and standard deviation as the initial
evolvedperturbationsof the lagged forecastmethod for comparison (refer to
the “Calculation of perturbation growth rate” section).

The 72-h perturbation growth rates inWNP, NA, and NH regions for
the IFS decrease as the magnitude of initial perturbations increases, indi-
cating a more rapid growth for smaller initial perturbations. This is con-
sistentwithprevious studies that attribute this phenomenon tomore intense
atmospheric instability at smaller scales47,48. In contrast, the growth rate of
initial evolved perturbations for the FuXi model is significantly lower than
that in IFS when the initial perturbationmagnitude is below approximately
1.5m2 s-2. In addition, the growth rate of perturbations in FuXi increases
with largermagnitudes, displaying an opposite trend to that observed in the
IFS. This discrepancy suggests that the dynamical growth of small pertur-
bations in the AI-based weather model may differ from those in NWP
models, and the dynamical sensitivity is much less pronounced in AI
models. This finding supports the conclusion by Selz and Craig40 that AI
weather models may have limitations in simulating the “butterfly effect”.

Although FuXi exhibits significantly weaker growth dynamics with
small initial perturbations, our findings reveal that when the magnitude of
initial perturbations exceeds certain thresholds (about 1.5–2m2 s-2 for the
WNP, NA, and NH), the growth rate becomes similar to that of physics-
based dynamic models. This threshold is comparable to the amplitude of
analysis error variance estimated in most global operational data assimila-
tion systems49,50. This phenomenonmay stem from the nature ofAImodels,
which are trained on historical datasets of limited duration and spatial
resolution. Since theminimumdeviation of initial states between analogous
trajectories is constrained in historical datasets, models trained on it have
limited ability to resolve the evolution of perturbations with amplitudes
below the threshold. In addition, random noise perturbations, despite
having the same magnitude as the initial evolved perturbations, exhibit a
much slower growth rate (slightly above one) in FuXi. Contrary to previous
studies suggesting that the perturbation dynamics in AI models may sig-
nificantly differ from those in NWP models, our results demonstrate that
AI-based models exhibit similar perturbation growth when initial pertur-
bations have appropriate magnitude and physical constraints. This finding
quantitatively complements the results fromSelz andCraig40 and provides a
basis for selecting initial perturbation amplitude in ensemble forecasting.

To further assess the physical consistency of perturbation evolution
within the FuXi and IFS, Fig. 2 illustrates the 5-day temporal evolution of
500-hPageopotential height (GH)perturbationfields for both IFSandFuXi,
starting from 0000 UTC on July 20, 2021. During this period, TC In-Fa
(highlighted by green stars) was developing inWNP. A perturbation with a
lagged interval of 36 h (i.e., iΔt = 36 h) is used as the initial perturbation for
both FuXi and IFS. The evolution of forecasts with random Gaussian noise
in FuXi is also presented for comparison.

Figure 2 clearly shows that the initial evolved perturbations of 500-
hPa GH in both FuXi and IFS predominantly display large-scale, wave-
like patterns at mid-latitudes. These perturbations are primarily con-
centrated around established weather patterns, including the troughs at
the Scandinavian Peninsula and North America, and the ridge in Siberia,
which are associated with synoptic-scale baroclinic instabilities51,52.
Although less intense, notable initial perturbations are also evident in the
tropics, particularly around the TC vortices and their surrounding
environments in theWNP. This indicates that these dynamically evolved
initial perturbations can effectively capture uncertainties in initial con-
ditions that are closely related to the instabilities of theseweather patterns.
In stark contrast, initial perturbationsderived fromrandomnoise lack this
spatial coherence.

As the lead time increases, the initial evolved perturbations of 500-hPa
GH in both the FuXi and IFSmodels gradually develop and amplify, driven
by the dynamics of the background flow. Notably, these perturbations
demonstrate a high degree of spatial similarity across both models. For
instance, perturbations intensify and cluster around the deepening troughs
near the eastern coast of North America and the Ural Mountains, as well as
around the TC vortices. The kinetic energy spectra of perturbations in both
the FuXi and IFS models, as a function of lead time, are also presented to
quantify their similarity (see a7 and c7 in Fig. 2). The temporal variation of
the spectrum in the evolved perturbations from FuXi and IFS shows a
similar pattern, both demonstrating clear upscale perturbation growth
behavior. However, the Gaussian noise in FuXi displays significantly higher
perturbation energy at small scales and substantially weaker energy at
wavelengths above 300 km compared to the reference throughout all lead
times. Qualitatively similar results are observed in other cases (see Supple-
mentary Figs. 2–4).

This spatial similarity can be attributed to two primary aspects.
Firstly, the FuXimodel presents robust capability in simulating large-scale
circulation patterns, similar to that of the IFS model. Secondly, the initial
perturbations are appropriately constrained in physics and magnitude,
allowing FuXi to effectively simulate their dynamical evolution on the
reference flow pattern. In contrast, the evolution of randomnoise exhibits
significantly less physical consistency. The growth of Gaussian noise
within FuXi is notably slower and less organized compared to the initial
evolved perturbations, even with comparable initial perturbation ampli-
tudes, as is also noted by Selz et al40. This disparity suggests a potential
limitation of FuXi in identifying and adjusting randomnoise that is rarely
observed in the training dataset and appears to project onto decaying
modes. Moreover, AI models still have difficulty in accurately repre-
senting small-scalemotions, resulting inminor peaks at small scales in the
FuXi spectrum. This issue has also been discussed in Selz and Craig40 and
Bonavita41.

Fig. 1 | The relationship between 72 h growth rate and initial magnitude of deep
wind perturbations. Perturbations and growth rates are evaluated in the western
North Pacific Ocean (a), the North Atlantic Ocean (b), and the mid-latitudes (c)
from July toOctober 2021. Different colors represent different lagged intervals (iΔt).

Dots, boxes, and triangles correspond to evolved perturbations in FuXi, evolved
perturbations in IFS, and Gaussian noise in Fuxi, respectively. The gray area indi-
cates the initial perturbation magnitude in the IFS ensemble forecast.
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TC track ensemble forecast
Building on the insights from the quantitative analysis on the dynamic
growth of perturbations in the FuXi model, this section emphasizes the
development of TC ensemble forecasts and the evaluation of TC track
forecasts within this model. Initially, the skill of the deterministic forecasts
for TC tracks in FuXi is assessed prior to the implementation of ensemble
predictions.The results (see Supplementary Fig. 5) show that the averageTC
track errors over five days are overall lower in the FuXi model compared to
the IFS, with reductions from 370 km to 300 km in the WNP and from
410 km to 200 km in the NA. This improvement in TC track forecast
accuracy in FuXi aligns with findings in previous studies27,28, laying a solid
foundation for subsequent TC track ensemble forecasting efforts.

In the ensemble generation scheme of the FuXi model, the lagged
interval of forecasts (iΔt) is a critical parameter that governs the magni-
tude of initial perturbations in the ensemble forecasting (refer to “A fast
physics-based perturbation generator for the FuXi model”). Sensitivity
tests have identified an optimal lagged interval of 36 h, which minimizes
the ensemble mean track forecast errors averaged over all samples and

ensures that the SSRof the track error approaches one (see Supplementary
Fig. 6). This selection is further supported by quantitative analyses pre-
sented in Figs. 1 and 2. As demonstrated in Fig.1, the initial perturbation
amplitude of DKE over the tropics with a 36-h lagged interval in FuXi is
approximately 0.8 m2 s-2, which is larger than the initial ensemble spread
of the operational IFS ensemble forecast, approximately 0.3 m2 s-2. How-
ever, the growth rate of these perturbations is slower than that of the IFS
ensemble (1.3 vs. 4.2 for 48 h in WNP). This discrepancy in initial per-
turbation amplitude can be attributed to differences in the ensemble
generation schemes used in IFS and FuXi, as well as their fundamental
differences inmodel dynamics. Specifically, IFS utilizes the singular vector
(SV) and ensemble data assimilation to generate initial perturbations. In
SV, the fastest linearly growing perturbation conditioned on a specific
atmospheric state over a short subsequent time window is represented.
The dynamic properties of the SV likely contribute to its accelerated
growth in the initial days. Consequently, despite larger perturbation
amplitudes and slower growth rates, the 36-h lagged interval is selected
due to its comparable perturbation amplitudes and ensemble spread of

Fig. 2 | The growth of different perturbations in FuXi and IFS for the forecast
initialized at 0000 UTC Jul 20, 2021. Columns a–c correspond to perturbations,
Gaussian noise in FuXi, and perturbations in IFS, respectively. Rows 1–6 correspond
to the forecasts at 0 h, 24 h, 48 h, 72 h, 96 h, and 120 h, respectively; Contours in these
figures indicate the 500-hPa geopotential height from the control forecast, colored
shading is the differences in 500-hPa geopotential height between the perturbed

forecast and the control forecast. Green stars represent locations of TC In-Fa. Row 7
gives the kinetic energy spectra of 500 hPa wind in control forecast (black line, mean
spectra of 0–5-day forecast) and the kinetic energy spectra of 500 hPa wind in
evolutionary perturbations (colored lines, colors represent different lead times). The
kinetic energy spectra are evaluated between 0N and 70N.
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environmental variables for TCs at 48 and 72 lead times. A longer
(shorter) lagged interval results in larger (smaller) amplitudes of initial
perturbations, thereby overestimating (underestimating) the ensemble
spread of TC tracks (see Supplementary Fig. 6). Figure 2 further reinforces
that initial perturbationswith a 36-h lagged interval effectively capture the
physics-based uncertainties in the initial conditions, thereby providing

reliable dynamical evolution of forecast perturbations in subsequent
forecasts.

Figure 3 compares the TC track ensemble forecast skill averaged over
all 113 cases between the FuXi and IFS. Both ensemble forecasts utilize a size
of 50 members. The assessment metrics include mean track error, SSR, BS,
and CRPS (see more details in the “Evaluation metrics” section),

Fig. 3 | Ensemble forecast skills of all 113 typhoon cases. a1 gives Fuxi (green line)
and IFS (yellow line) mean track error (solid line) and ensemble dispersion (dashed
line). a2 gives the CRPS scores of the ensemble track forecasts from Fuxi (green line)
and IFS (yellow line). a3 gives the BS scores of Fuxi (solid line) and IFS (dashed line)
track forecasts at thresholds of 30 km (blue), 60 km (green), and 120 km (red). Scores
in (a1–a3) are averaged over 74 typhoon forecasts in WNP. a4–a6 give the relative

differences in ensemble mean errors, CRPS scores, and BS scores between Fuxi and
IFS. Negative (resp. positive) error, CRPS, and BS values indicate FuXi (resp. IFS)
performs better. Stars (triangles) in each figure show lead times when mean track
error, CRPS and BS scores are significantly lower in FuXi than in IFS at a 90% (95%)
confidence level with the student t-test. b1–b6 are the same as (a1–a6) but corre-
spond to 39 typhoon forecasts in NA.
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highlighting their relative differences. As depicted in Fig. 3a1, a4, the
ensemblemean track error for FuXi is approximately 20% lower than that in
the IFS ensemble in the WNP basin beyond day 1. The reduction in track
error is even more pronounced in the NA basin, reaching up to 40% (Fig.
3b1, b4). The reduction is statistically significant at the 0.1 level in 2- to 5-day
forecasts. This may be attributed to the superior performance of the FuXi
deterministic TC track forecast (see Supplementary Fig. 7 for similar error
reductions in deterministic forecasts and ensemble mean forecasts). Fur-
thermore, the ensemble spread of TC tracks in FuXi maintains relatively
consistent with its ensemble mean errors, indicating a high reliability score
for the FuXi ensemble forecast. This consistency is crucial for an EPS, as it
ensures that the TC track ensemble members effectively represent forecast
uncertainties and accurately reflect the spatial range of TC positions.

In terms of the probability forecast of TC tracks, the FuXi ensemble
outperforms the IFS ensemble as shownby theCRPS,with improvements of
approximately 20% in theWNP and 40% in the NA. This suggests that the
probability density function (PDF) of the TC position ensemble generated
by FuXimore accurately reflects the observed probability distribution of TC
positions. Additionally, the FuXi ensemble demonstrates superior perfor-
mance in the BS at thresholds of 120 km, 60 km, and 30 km, as shown inFig.
3a6, indicating that the FuXi TC track ensemble forecast is more effective in
estimating the strike probability at varying thresholds. ForCRPS andBS, the
reduction is also statistically significant in the forecast from 2 to 3 days.
Despite these systematic improvements in TC track ensemble forecasting
skill, the FuXi ensemble exhibits a 10%–20% degradation in performance
during the first 12 h, as measured by the applied metrics, which might be
causedby the larger amplitudeof the initial perturbations in theFuXimodel.
The statistically insignificant differences in theperformanceofBS andCRPS
beyond 4 days might be attributed to the reduced number of cases.

To further evaluate the forecast skill of our method, we compare the
evolved perturbation generator with a Gaussian perturbation generator and
a generative-basedFuXi-ENS ensemble systemusing 27 forecasts from5TC
cases in 2018 (TCs Ampil, Ernesto, Cimaron, Florence, and Kong-rey).
Initial Gaussian noise is generated from the standard deviation of initial
evolved perturbations. Details of the FuXi-ENS scheme and its TC track
forecast can be found in Zhong et al.42. Notice that only a limited number of
TC cases fromZhong et al.42 are used in this study for the initial comparison,
as FuXi-ENS has not yet been open sourced. A more comprehensive
comparison, involving a larger number of TC cases, will be conducted in
future studies. The forecast verification results and the ensemble forecast
tracks for two TC examples are provided in Supplementary Figs. 8 and 9,
respectively.Notably, althoughFuXi-ENSdemonstrates somewhat superior
performance in mean track error and CRPS scores, FuXi with the evolved
perturbations exhibits higher spread, which maintains the consistency
between ensemble spread andmean track error, along with lower BS scores.
The spread-error difference is less than 60 km in FuXi with evolved per-
turbations, comparable to the skills of IFS, whereas the difference exceeds
100 km in FuXi-ENS and 200 km in FuXiwithGaussian noise. As shown in
Supplementary Fig. 9, ensemble tracks generated by the evolved perturba-
tion generator exhibit a larger spread and encompass the IBTrACS track,
outperforming other methods.

Ensemble forecast with 2000 members
To further evaluate the forecasting capabilities of the FuXi ensemble, par-
ticularly its advantage in rapid computation, we conducted a case study on
the track forecasts of TyphoonChanthu using 2000members, starting from
0000 UTC on September 9, 2021 (see Fig. 4). This study aims to investigate
the impact of substantially large ensemble sizes onTC forecasts and evaluate
their contribution to the forecast accuracy. Additionally, it addresses the
trade-off between the number of ensemble members and the associated
computational cost, which was previously impractical with traditional
numerical models but is now feasible with fast and accurate AI-based
models. In our experiment, the operational IFS ensemble forecasts with 50
members (IFS-50), FuXi ensemble forecasts with 50 members (FuXi-50),
and 2000 members (FuXi-2000) were analyzed to assess performance

differences. Ensemble forecast generatedwithGaussian noise in FuXi is also
tested, as shown in Supplementary Fig. 10. It is noted that Gaussian noise
without physically consistent spatial distribution grows slowly in FuXi,
leading to a significant underestimation of forecast spread, which is parti-
cularly detrimental for reliable probability forecasts. Therefore, the com-
parisons below are focused on the FuXi ensemble generated with our
scheme (FuXi-50 and FuXi-2000) and the ensemble from the operational
IFS ensemble (IFS-50).

The IFS-50 and FuXi-50 ensemble forecasts demonstrate comparable
performance in predicting the track of Typhoon Chanthu, with both sys-
tems achieving a 120-h mean track error of less than 150 km. When eval-
uated using mean track error, BS, and CRPS, FuXi-50 outperforms within
the first 100 h of the forecast, while IFS-50 exhibits greater accuracy in the
100–120 h forecast range, as illustrated inFig. 4d, h, l. The track spread in the
IFS ensemble remains slightly larger throughout the forecast period. For
instance, in the 120-h IFS ensemble forecast, 39.53% of the ensemble
members deviate by over 240 km from the IBTrACS track, whereas in the
FuXi ensemble, only 19.15% of the members exhibit this level of deviation.

The comparisonbetweenFuXi-2000andFuXi-50 clearly demonstrates
that increasing the number of ensemble members improves probabilistic
scores, such as CRPS and BS, by approximately 10% (Fig. 4l), while it has a
minimal effect on the ensemble mean error. In particular, the frequency
distribution of TC positional errors becomesmore continuous and accurate
as the ensemble size increases. For instance, in the IFS-50 and FuXi-50
forecasts, the frequency distribution of ensemble errors exhibits multiple
maxima andminima, and the spatial coverage of ensemble tracks is discrete
(Fig. 4c, g). In contrast, FuXi-2000 produces a much smoother frequency
distributionwith a prominent peak around120 km, and the spatial coverage
of ensemble tracks provides a continuous and nuanced representation of
error patterns (Fig. 4k). As highlighted in previous research53, increasing the
ensemble size allows for the simulation of extreme events at the tails of the
forecast distribution, such as ±2σ and ±3σ, that are not captured in smaller
ensembles. For example, in the 120-h forecast byFuXi-2000, some ensemble
members predict TC landfall in Japan, an outcome not observed in the
FuXi-50 or IFS-50 ensembles (Fig. 4c, g, k). Therefore, using a large
ensemble size in ensemble forecasts, particularly with AI models, holds
significant potential for enhancing forecasting skills, especially in predicting
TC tracks. Similar results are observed in a low predictable TC Haikui
(Supplementary Fig. 11). Nonetheless, caution must be taken when
extending these single-case results to a broader range of scenarios. The
optimal number of ensemblemembers remains an openquestion, requiring
further theoretical and quantitative analysis.

Comparison of ensemble covariance
To further assess the physical consistency of the FuXi and IFS ensemble
forecast, we analyzed the spatial ensemble covariance of 500-hPa GH for
FuXi-50, FuXi-2000, and IFS-50, as shown in Fig. 5. In an optimal ensemble
prediction scheme, the ensemble should accurately capture the spatially
coherent relationships of variables at both the initial and forecast times. In
this analysis, the spatial correlation of ensemble perturbations is calculated
with respect to the reference point at 30N, 135E (dark green star), which is
located near the western boundary of the Western Pacific subtropical
high (WPSH).

In Fig. 5, IFS-50 exhibits a reasonable and physically consistent spatial
distribution of initial perturbation correlation from the reference point.
High levels of positive correlation are observed near the reference point,
particularly over the western and northern areas of the WPSH, with a
gradual decrease in correlation at greater distances. This pattern can be
attributed to the dynamics-based singular vector scheme used to generate
IFS-50’s initial perturbations16,54. Relatively weak spatial correlations are
observed in regions several thousand kilometers away, likely due to the
spurious long-distance correlations resulting from the limited number of
ensemble members.

The initial perturbation correlation of FuXi-50 is generally similar to
that of IFS-50 but exhibits a considerably broader coverage of positive

https://doi.org/10.1038/s41612-025-01009-9 Article

npj Climate and Atmospheric Science |           (2025) 8:128 6

www.nature.com/npjclimatsci


Fig. 4 | The forecast of Chanthu initialized at 0000 UTC Sep 9, 2021 from
different models. TC track ensemble forecast from 50 members of the IFS opera-
tional ensemble system (IFS-50, a–c), 50 members of FuXi (FuXi-50, e–g), and 2000
members of FuXi (FuXi-2000, i–k) are shown. a–c represent 24 h, 72 h, and 120 h
forecast of IFS-50. In the upper subplot, colored dots give TC positions from dif-
ferent forecast members at a valid time, colors indicate forecast errors, and gray lines
and black lines give TC tracks from the ensemble forecast and IBTrACS dataset,
respectively. TC position of IBTrACS at valid time is marked by a larger black point.

In lower subplots, histograms give the frequency of forecast errors from ensemble
forecasting members. e–g and i–k are the same as (a–c), but for FuXi-50 and FuXi-
2000, respectively. d shows the relative difference in the ensemble mean track error
between IFS and FuXi-50 (dashed line) aswell as FuXi-2000 (solid line).h is the same
as (d), but for the relative difference in CRPS scores. l is the same as (d) but for the
relative differences in BS scores at 30 km (blue), 60 km (green), and 120 km (red)
threshold. Negative (resp. positive) values of BS and CRPS indicate FuXi (resp. IFS)
performs better.
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correlations, extending into the upstream regions in Eastern Europe and
Siberia. This broader coverage may result from the generation of initial
perturbations of FuXi-50 using a short-time window preceding the initial
prediction time. Although FuXi-50 overestimates the area with positive
correlations at the initial time, the spatial correlation of the ensemble
forecast perturbations in FuXi-50 and IFS-50 becomes more similar as lead
time progresses, peaking in 2–3 days (with a spatial correlation coefficient of
approximately 0.56 in theWNPbasin at 48 h).This similaritymaybe related
to the approximately linear error growth regime within the first two days16.
Furthermore, this similarity remains over 0.5 when using 2000 ensemble
members (with spatial correlation coefficient increased to approximately
0.62 at 48 h, Fig. 5b6), indicating that the initial perturbations produced by
our physics-based perturbation generation scheme in FuXi develop with
physical consistency, akin to those in traditional NWPmodels. Despite the
similarity between the ensemble perturbation covariance of FuXi and IFS
ensemble, both exhibit long-distance weak covariance. This may be attrib-
uted to the limited dimensionality of the subspace spanned by the pertur-
bations, potentially leading to a rank deficiency of the perturbation
covariance matrix.

Beyond 72 h, the similarity between the spatial correlation fields of
ensemble perturbations in IFS-50 andFuXi-50decreases, possiblydue to the
increasing influence of nonlinear effects. The similarity between IFS-50 and
FuXi-50 is also observed for a reference point on land and in mid-latitude

(Supplementary Fig. 12), aswell as inTCHaikui (Supplementary Fig. 13). In
conclusion, based on selected cases, the similarity in perturbation correla-
tions between FuXi-50, FuXi-2000, and IFS-50 suggests that the perturba-
tions generated by ourmethod in FuXi exhibit physically consistent growth,
contributing to improved TC track forecasts. A more comprehensive
investigation is needed to fully generalize these results.

Discussion
For high-impact weather systems like TCs, ensemble forecasting is crucial
for capturing uncertainty in forecast outcomes to quantify the risk of
associated disasters. However, traditional ensemble forecasting of NWP
models is limited by the significant computational resources required to run
a large number of ensemble members, which hampers further improve-
ments in TC ensemble forecasting skills. The recent development of AI-
based weather prediction models, with high forecast accuracy and sig-
nificantly lower computational costs, presents a promising opportunity for
advancing TC ensemble forecasts. Nonetheless, an efficient initial ensemble
generation scheme for AI-based models has yet to be developed, that is
relevant to the specificities of AI model dynamics. In this study, we first
analyze the quantitative relationship between the perturbation amplitude
and the growth rate in AI models. It is identified that in the FuXi model,
initial perturbations with small amplitude and random distribution grow
slowly, while perturbations with appropriate amplitude and physical

Fig. 5 | Ensemble-based autocorrelations from the green asterisk (30N, 135E) for
forecasts from FuXi and IFS. 0 h (row 1), 24 h (row 2), 48 h (row 3), 72 h (row 4),
and 120 h (row 5) forecast of 500 hPa geopotential height given by 50 members of
FuXi (left column), 2000members of FuXi (middle column), and 50members of IFS

(right column) are shown for the forecast of Chanthu initialized at 0000 UTC Sep 9,
2021. a6 gives the correlations between FuXi-50 and IFS autocorrelations in the
WNP area. b6 is same as (a6) but for FuXi-2000.
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constraints exhibit similar dynamical growth behavior as those in NWP
models. Based on this, we proposed an efficient initial perturbation gen-
eration scheme for the FuXi model, which brought superior ensemble
forecast skill forTC tracks compared to the state-of-the-art EPSof ECMWF.

The sensitivity analysis of initial perturbations reveals that the dyna-
mical growth of perturbations in the FuXi model is influenced not only by
the amplitude but also by the spatial characteristics. Initial perturbations
with small amplitudes in the FuXi model grow significantly slower than
thosewith the same amplitude in the IFSmodel of ECMWF, consistentwith
preceding findings40. Moreover, initial perturbations consisting of random
noise, regardless of the amplitude, exhibit slow and non-physical growth
dynamics. However, our study extends beyond prior research by demon-
strating the quantitative relationship between the perturbation amplitude
and the growth rate, showing that initial evolved perturbations, once they
surpass a certain amplitude threshold, exhibit growth rates and spatial
structure development comparable to those in the NWP model. This is
attributed to the generation of these initial perturbations, which incorporate
the short-range evolutionary dynamics inherent to the FuXimodel, thereby
reflecting the uncertainties associated with atmospheric physical
instabilities.

We proposed a fast physics-based ensemble generation scheme based
on the initial evolved perturbation for the FuXi model and applied it to the
ensemble forecasting of TC tracks. The perturbation covariance matrix is
estimated using a set of initial evolved perturbationswithin a two-week time
window preceding the initial time of forecasts. This covariance matrix is
then utilized to conveniently generate initial perturbations in any desired
quantity, ensuring that the generated ensemble adheres to the statistics of
the first (mean) and second (covariance) moments of the perturbations.

Our evaluation based on extensive TC samples from both the WNP
and NA basins demonstrates that the FuXi ensembles outperform the IFS
ensembles with an equal ensemble size of 50 members in terms of not only
the ensemble mean TC track errors but also the SSR as a measure of relia-
bility. This leads to higher probability skill scores of the FuXi ensemble
forecasts, such as the CRPS and BS. The superior performance of the FuXi
ensembles can be attributed to both the physics-conditioned spatial corre-
lations of ensemble perturbations within the model and the improved
deterministic TC track forecasts provided by FuXi. It is also expected that,
using appropriate adjustments to the ensemble perturbation covariance,
such as the rescaling and spatial localization55,56, the FuXi ensemble has the
potential to further improve forecast skill. Moreover, due to the high
computational efficiency of the FuXi model, we were able to conduct TC
ensemble forecastswith 2000members— a scale unprecedented inprevious
studies. Preliminary analysis of two TCs indicates that the increase in
ensemble size further enhanced the TC ensemble forecast skill. However,
further work is needed to generalize the results and better understand the
ensemble size required. And characteristics of the error distribution in large
ensembles should also be further analyzed.

Although the FuXi model demonstrates improved ensemble forecast
skills forTC tracks compared to the IFS, there is still potential to enhance the
initial perturbation scheme. In our method, the growing perturbations are
not adequately sampled, a degradation in forecast performanceexists during
thefirst 12 h, and theflowdependencywithin initial ensemble perturbations
is relatively weak due to the design of the time window. Future research
could explore the integration of optimally growing modes, such as the
singular vector16 and the conditional nonlinear optimal perturbation
(CNOP57), into the perturbation generation, which may lead to further
enhancements of TC ensemble forecast skill. On the other hand, notice that
this study focuses solely on initial uncertainty by perturbing only the initial
states. Representingmodel deficiencies in ensemble forecasting, particularly
usingMLmodels, remains a significant challenge39,53,58, and will be explored
in future studies. Moreover, TC intensity, an area where AI models are
known to be less skillful, is another crucial aspect to explore through
ensemble forecasting in future works. Additionally, while AI-based weather
models have limitations, particularly in smoothing small-scale features in
longer-range forecasts (WeatherBench 226), they excel in simulating large-

scale weather patterns, such as TC-related environmental circulation. This
capability is crucial for efficient TC track ensemble forecasts using AI
models. Therefore, it is essential to gain a comprehensive understanding of
the physical and dynamical properties of AImodels before developing their
effective applications in research and prediction.

Methods
FuXi model
This study utilized FuXi, an AI-based global medium-range weather fore-
castingmodel, to investigate the perturbation growth dynamics and develop
an effective ensemble forecasting scheme for TC tracks. FuXi model is
distinguished by its superior performance in deterministic forecast RMSE
and anomaly correlation coefficient (ACC) relative to ECMWF high-
resolution IFS and other AI-based models according to the evaluation of
WeatherBench 226.

FuXi model employs the space-time cube-embedding technique to
reduce the dimension of the input multi-variable 3D data. The embedded
data is then processed using the computationally efficient U-transformer
architecture. Themodelwas trainedon 39 years of 6-hourly ECMWFERA5
reanalysis data with a spatial resolution of 0.25 degrees. Predictions are
generated through a simple fully connected (FC) layer, producing meteor-
ological variables including five upper-air atmospheric variables (geopo-
tential, temperature, horizontal wind, and relative humidity) and five
surface variables (10-m horizontal wind, 2-m temperature, mean sea-level
pressure, and 6-hourly total precipitation), all at a horizontal resolution of
0.25degree.As anautoregressivemodel, FuXi initiates predictionsusing two
preceding states at times t and t− 1 and iterates with a time step of 6 h. For
15-day forecasts, threemodels fine-tuned from the pre-trained FuXimodel,
i.e., FuXi-Short, FuXi-Medium, and FuXi-Long, are employed for 0–5 days,
5–10 days, and 10–15 days forecasts, respectively. This cascade architecture
withmultiplefine-tunedmodels aims tominimize error accumulation from
iterative predictions andoptimizeperformanceacross different forecast lead
times. In this research, as most operational forecast systems15,20,59, we focus
on the TC track forecast within 5 days, and thus only the FuXi-Short model
is used. Further details on the FuXi model can be found in Chen et al.29.

Forecast and verification data
Theprimary aimof this study is to compare theTC track ensemble forecasts
derived from the FuXi model to those generated by the operational EPS of
the ECMWF. Previous research has consistently demonstrated that the
ECMWF EPS provides the most accurate TC track forecasts among
advanced NWP-based EPSs14,15. The historical operational ensemble fore-
cast products used in this study are sourced from the THORPEX Interna-
tionalGrandGlobal Ensemble (TIGGE)dataset, whicharchives operational
ensemble forecast data from 13 global NWP centers, commencing in
October 2006 (available at https://apps.ecmwf.int/datasets/data/tigge/
levtype=sfc/type=cf/). In addition to the ensemble forecast data that are
used to evaluate the TC track probability forecast skill and the related
evolution of ensemble covariances, the deterministic (or unperturbed)
forecasts of ECMWF are also utilized to explore the dynamical growth
properties of perturbations (see more details in the “Calculation of pertur-
bation growth rate” section). Both the ensemble and control forecasts are
producedwith the IFS version 48r1, configured with a horizontal resolution
of 9 km and 137 vertical levels. However, the ECMWF forecast data
accessible in the TIGGE archive has been interpolated to a horizontal
resolutionof 0.25degrees, facilitating a straightforward comparisonwith the
output data from FuXi.

In addition to conventional prognostic variables, the TIGGE provides
the dataset of TC track ensemble forecasts for a direct evaluation of track
forecast skill. In ECMWF, the positions of TCcenterswithin these ensemble
outputs are determined using a TC tracker algorithm. The tracker identifies
the local minimums of mean sea-level pressure (MSLP) and then deter-
mines the TC center from these minimums with a cyclonic signature and a
warm core60. The TC tracker for FuXi is a modified version of the one used
by the ECMWF. Key modifications include the incorporation of the local
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vorticity maxima as possible TC centers and the application of average-
pooling during the detection of local maxima and minima. In which, the
average-pooling technology is used to calculate the average value of small
regions to avoid falseminima. Themodified tracker is better suited for FuXi
forecasts, which tend to be smoother and less physically constricted and
might include false local minima due to minor differences among adjoint
points. A comprehensive description of the TC tracker can be referred to
Zhong et al.42.

We initialize the FuXimodel using ERA5 reanalysis data, aligningwith
standardpractices employedbyotherAI-basedweathermodels27,29. Existing
research has shown that AImodes trained on ERA5 also workwell with IFS
analyses61. And the ERA5dataset serves as a reference for verifying forecasts
generated by both the ECMWF and the FuXi models. For the evaluation of
TC track ensemble forecast skills, the International Best Track Archive for
Climate Stewardship (IBTrACS, available at https://www.ncei.noaa.gov/
products/international-best-track-archive) is utilized as the reference
dataset. IBTrACS merges both recent and historical tropical cyclone data
from multiple agencies, representing the most comprehensive global col-
lection of TC information available.

Calculation of perturbation growth rate
Given the limited research on the perturbation sensitivity of AI models, we
adopted a classical method, i.e., the lagged forecast method as proposed by
Lorenz (1982)62 to address this issue. In this approach, we consider two
forecasts Ft�i; jþið ÞΔt and Ft0 ;jΔt

initialized at times t�i and t0, respectively,
with a lagged interval of iΔt, but both valid at the same time. Their forecast
leading times are jþ i

� �
Δt and jΔt, respectively, and Δt represents a time

interval. We define the difference between the two forecasts as eðiΔt; jΔtÞ,
and calculate the mean growth rate (or the amplification factor) of this
difference over the leading time jΔt as follows:

riΔt;jΔt ¼
eðiΔt; jΔtÞ
�� ��
eðiΔt; 0Þ
�� �� ð1Þ

where j � j denotes the L2 norm. In this method, eðiΔt; 0Þ and eðiΔt; jΔtÞ
represent the initial perturbation and its evolution after a time of jΔt. It is
noted that while analyzing the variation in growth rate in Fig. 1, we use the
accumulative kinetic energy of deep-layer wind from 850hPa to 200hPa
within local regions as the variable since it best represents TC motion.
However, in ensemble forecasts, initial perturbations are generated and
applied globally to all input variables, including three-dimensional zonal
and meridional winds, temperature, geopotential, and relative humidity.

This method offers several distinct advantages. (1) It can be easily
implemented as long as historical forecast data at regular intervals are
available, requiring minimal computational resources. (2) The initial per-
turbation (i.e., eðiΔt; 0Þ) is evolved by themodel dynamics during the short-
range lagged forecast (termed as initial evolved perturbation hereafter),
resulting in dynamical perturbations that exhibit physical balance and
spatial instability characteristics of the atmosphere. (3) By adjusting the
lagged time (i.e., iΔt), the method allows for flexible control over the
magnitude of initial perturbations. These properties make it an effective
approach for analyzing the perturbation growth properties of a dynamical
system. This method will be employed to compare the perturbation growth
rate and its dependence on the magnitude of initial perturbations between
the IFS of ECMWF and the FuXi model.

A fast physics-based perturbation generator for the FuXi model
The study on the perturbation dynamics of the FuXi model demonstrates
that,when themagnitude is properly tuned, the initial evolvedperturbations
exhibit a growth rate comparable to those in the ECMWF physics-based
model (see Fig. 1). This outcome is closely linked to the generation of initial
perturbation, which is calculated as the difference between the FuXi forecast
at a lagged interval of iΔt and the analysis at the same valid time t0. The
short-term (i.e., iΔt) evolution of the FuXi model dynamics progressively
drives the perturbation eðiΔt; 0Þ towards the unstable perturbations17,63,

effectively reflecting the spatial uncertainties of variables conditioned on the
atmospheric state at t0. Such physics-based initial evolved perturbations
ensure dynamically and physically reasonable evolution and amplification
of perturbations in subsequent lead times, mirroring the behavior of the
NWP model (see Fig. 2). Consequently, inspired by the NMC method for
3D-Variational data assimilation, we proposed a fast physics-based scheme
for generating initial ensemble perturbations in the FuXi model, consisting
of three key steps (see the schematic diagram Fig. 6).

Step 1. At the initial time t0 for TC prediction, perturbations are
selected as eðiΔt; 0Þjt0 ; eðiΔt; 0Þjt�1

; . . . ; eðiΔt; 0Þjt�n
, where the subscript

t�n indicates that the evolvedperturbation is valid at time t0 � nΔt. In other
words, these successive evolved initial perturbations are sampled within a
short-time window preceding from t0 � nΔt to t0 with a sampling interval
of Δt. In this study, perturbations eðiΔt; 0Þ are calculated every 12 h
(Δt ¼ 12h), and a total of 25 initial perturbations are selected (n ¼ 24), i.e.,
the timewindow is 12 days before the initial time t0. The evolving interval is
set to 36 h, i.e., i ¼ 3.

Step 2. 25 initial perturbations eðiΔt; 0Þ are positively and negatively
paired tomake 50 ensemble members, the same as the ensemble size in IFS.
These paired members are used to estimate the perturbation covariance
matrix, providing a statistical estimation of the uncertainties in the initial
conditions. Notably, no localizationmethod is applied in this study to avoid
introducing additional adjustable parameters.

Step 3. Once the perturbation covariance matrix is derived, use it to
generate initial ensemble perturbations that approximately represent the
first and second moments of the initial condition errors. These perturba-
tions are added to the ERA5 reanalysis state to compute perturbed initial
states and carry out ensemble forecasts.

The ensemble initialization scheme offers four advantages. (a) The
initial evolved ensemble perturbations not only sample the grid-point
uncertainties of the initial error but also capture the spatially coherent
structures of these errors, therebymaintaining physical consistency. (b) The
time window for generating initial perturbations advances with the initial
prediction time, ensuring a certain level of flow dependence of initial per-
turbations. (c) The scheme allows for convenient adjustment of the per-
turbationmagnitude by tunning the lagged interval of forecasts (iΔt), for an
optimal ensemble forecast performance. (d) Initial ensemble perturbations
are generated through random sampling based on the perturbation covar-
iance statistics. This ensures both the randomness and equal probability of
the initial members while enabling the rapid creation of a large
ensemble size.

Experimental design
This study consists of two experimental components. The first one involves
analyzing and comparing the dynamics of perturbation growth between the
IFS model of ECMWF and the FuXi model. Based on findings from this
analysis, the second component focuses on optimizing the ensemble gen-
eration scheme for the FuXi model and applying it to TC track ensemble
forecasts. The performance of these TC track ensemble forecasts is com-
prehensively evaluated and comparedwith the operational EPS of ECMWF.

In the first part, the perturbation growth rates with varying initial
perturbationmagnitudes are comparedbetween the IFSmodel and theFuXi
model using the lagged forecast approach.These lagged forecasts are derived
from the respective deterministic forecasts of the two models, spanning all
forecasts from 1 July 2021 to 31 October 2021, at 12-h intervals. The initial
perturbation magnitude is adjusted by varying the lagged interval of fore-
casts, i.e., iΔt, from 12 h to 120 h in 12-h increments. For the FuXi model,
the dynamical growth of Gaussian random noise is also investigated and
compared. Gaussian noise is generated through random sampling based on
the statistical mean and standard deviation of initial perturbations in the
lagged forecast experiments of FuXi. Since the TC track is primarily influ-
enced by the environmental deep steering flow3,4, the kinetic energy of deep
wind from 850 hPa to 200 hPa is used as a norm for calculating the dyna-
mical growth of perturbations. Diagnostic analyses are conducted over two
regions where TCs frequently occur: the western North Pacific (WNP,
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100–180E, 0–30N) and the North Atlantic (NA, 20–100W, 0–30N). A
broader area covering the mid-latitudes of the Northern Hemisphere (NH,
30–70N) is also included in the analysis.

Following the optimization of the ensemble generation scheme for the
FuXi model, its TC track ensemble forecast skill is comprehensively eval-
uated and comparedwith those of the IFS ensemble forecasts overmanyTC
samples. The study focuses onTCs in theWNPandNAbasins between July
and October from 2021 to 2023, selecting cases with a strength above tro-
pical storm level thatmakes landfall. In total, 36TCsare selected for analysis.
According to the Saffir-Simpson Hurricane Scale64, 12 of them are tropical
storms; 5 are category 1; 1 is category 2; 3 are category 3; 10 are category 4; 5
are category 5. For each TC, forecast experiments are conducted every two
days following the first appearance of the TC in the TIGGE forecast data,
resulting in a total of 113 TC ensemble forecast experiments.We select TCs
with landfall every two days for the evaluation considering the computa-
tional resources. By testing within a subset of TC cases, it is shown in
Supplementary Fig. 14 that conducting daily forecast evaluations using all
TCs results in only marginal differences in the overall outcomes.

Evaluation metrics
Mean track error and spread are commonly used metrics when evaluating
the ensemble forecast skills of TC tracks. They are defined as below:

MeanTrack Error ¼ pk � po
�� ��

Spread ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
k¼1

pk � pk
�� ��2

vuut

where pk is the TC location given in latitude and longitude from ensemble
member k,po is theTC location from IBTrACS, pk is the ensemblemeanTC
location, N gives the ensemble size and j � j denotes the great-circle
distance. A perfect ensemble forecast is characterized by a consistency
between spread and error.

CRPS is used to measure the distance between the forecasted TC dis-
tribution and the observed TC distribution65. It is generalized from one-
dimensional CRPS and is as known as energy distance. the CRPS for
d-dimensional forecast variable X and observation data Y is defined as:

CRPS ¼ 2EkX � Ykd � EkX � X0kd � EkY � Y 0kd

In our research, X is the 2-dTC location fromFuXi forecast, Y is theTC
location from IBTrACS data, X′ and Y′ are independent and identically
distributed copies of X and Y. E represent mathematical expectation and
k � kd represent d-dimensional Euclidean norm. It is shown that lower
CRPS indicates a lower difference between FuXi forecasts and IBTrACS
data, reflecting better forecast skill66. Fair CRPS is employed in this study to
compare experimental results.

BS shows the total difference in TC strike probability between FuXi
forecast ϕf and IBTrACS ϕo in region D (WNP or NA in our study), as is
also used by Zhang et al.36:

BS ¼
X
p2D

ϕf p
� �� ϕo p

� �� �2

where TC strike probability ϕ p
� �

at location p is defined as the probability
that a TC passes within a specific distance, chosen as 120 km, 60 km, and
30 km in our study. A lower BS value gives better forecast skills.

Data availability
ERA5 data is available at https://cds.climate.copernicus.eu/cdsapp#
!/search?type=dataset; TIGGE data is available at https://apps.ecmwf.int/
datasets/data/tigge/levtype=sfc/type=cf/; TIGGE Model Tropical Cyclone
Track Data is downloaded from https://rda.ucar.edu/datasets/d330003/;
IBTrACS dataset is at https://www.ncei.noaa.gov/products/international-
best-track-archive; FuXi model is open sourced at https://github.com/
tpys/FuXi.

Fig. 6 | Schematic diagramof the initial evolved perturbation scheme.The scheme
can bemainly divided into 3 parts: Firstly, 25 evolved perturbations are selected from
a time window before the initial time. Secondly, these perturbations are positively

and negatively paired to estimate the perturbation covariance. Finally, initial
ensemble perturbations are generated with the perturbation covariance.
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